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We consider charged rotating black holes in higher odd dimensions in theories such as

Einstein-Maxwell, Einstein-Maxwell-dilaton, and Einstein-Maxwell-Chern-Simons. Ret-

ricted to stationary axisymmetric black holes with equal-magnitude angular momenta

and a horizon of spherical topology, we present an Ansatz for the metric and the mat-

ter fields where the angular dependence is explicitly given and all the unknowns are

functions of the radial coordinate only. As a consequence, the field equations reduce to

ordinary differential equations. These black holes resemble, in general, their uncharged

counterparts, the Myers-Perry black holes. However, when the Chern-Simons term is

present new surprising effects appear, such as counterrotation, negative horizon mass, or

violation of uniqueness.

Higher dimensional black holes received much interest in recent years, in par-

ticular in the context of string theory, and with the advent of brane-world theories,

raising the possibility of direct observation in future high energy colliders.1

Static charged asymptotically flat black hole solutions of Einstein-Maxwell (EM)

theory exist for all spacetime dimensions D ≥ 4.2,3 The generalization of the Kerr

metric to higher dimensions was obtained by Myers and Perry,3 while the higher

dimensional generalization of the Kerr-Newman metric is still not known analyti-

cally.

In contrast to pure EM theory, exact solutions of higher dimensional charged ro-

tating black holes are known in theories with more symmetries or fields. For instance,

if a dilaton field is included, with the Kaluza-Klein value for the coupling constant,

one may produce black hole solutions to the corresponding Einstein-Maxwell-dilaton

(EMD) field equations by using the Myers and Perry solutions as seeds.4

Another example would be the presence of a Chern-Simons (CS) term. Surpris-

ingly, for D = 5 the addition of that term allows to solve the Einstein-Maxwell-

Chern-Simons (EMCS) field equations exactly in the special case when the CS cou-

pling constant is set to the supergravity value,5 and analytic solutions describing

charged, rotating black holes are known.6–8

For arbitrary values of the coupling constants of these theories (EM, EMD,

EMCS) no analytic solution is known. The numerical approach is the only possibility

then to study these black hole configurations.9,10
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We here concentrate on charged stationary axisymmetric black holes with equal-

magnitude angular momenta and a horizon of spherical topology in odd dimensional

EM, EMD, and EMCS theories. Under these assumptions it is possible to give

a general Ansatz for the metric and the matter fields, involving only unknown

functions of the radial coordinate.

Denoting the dimension of the spacetime by D(= 2N + 1), the metric for these

equal-magnitude angular momenta black holes reads
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where θ0 ≡ 0, θi ∈ [0, π/2] for i = 1, . . . , N − 1, θN ≡ π/2, ϕk ∈ [0, 2π] for

k = 1, . . . , N , and εk = ±1 denotes the sense of rotation in the k-th orthogonal

plane of rotation. An adequate parametrization for the gauge potential is given by

Aµdxµ = a0dt + aϕ

N
∑

k=1

(

k−1
∏

l=0

cos2 θl

)

sin2 θkεkdϕk . (2)

The dilaton field φ is a function of r only, like all the other unknown functions

f, m, n, ω, a0, and aϕ.

To obtain asymptotically flat solutions, the unknowns have to satisfy f |r=∞ =

m|r=∞ = n|r=∞ = 1 , ω|r=∞ = 0 , a0|r=∞ = aϕ|r=∞ = 0 , φ|r=∞ = 0. The horizon

is located at rH, and is characterized by the condition f(rH) = 0.9,10 Requiring

the horizon to be regular, the following boundary conditions must hold f |r=rH
=

m|r=rH
= n|r=rH

= 0 , ω|r=rH
= rHΩ , ΦH = (a0 + Ωaϕ)|

r=rH

, daϕ/dr|
r=rH

=

0 , dφ/dr|r=rH
= 0, where Ω is (related to) the horizon angular velocity and ΦH is

the horizon electrostatic potential.

Subject to the above set of boundary conditions, the system of ordinary differ-

ential equations resulting from the substitution of the Ansätze in the field equations

possesses regular black hole solutions in EM, EMD, and EMCS theories. In general,

those solutions share most of the properties of their uncharged counterparts, namely,

the Myers-Perry solutions.3 However, in EMCS theory new surprising phenomena

appear for certain parameter ranges, to which we now turn.

To describe these new features we focus on D = 5 EMCS black holes, denoting

the CS coupling constant by λ. For an appropriate normalization, λ = 1 corresponds

to the supergravity value. Depending on the value of λ, new types of black holes

appear, which can be classified by their total angular momentum J and horizon

angular velocity Ω. Black holes with λ ≥ 1 may possess a static horizon, while their
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Fig. 1 Properties of 5D non-extremal λ = 3 EMCS black holes with charge Q = −10 and
horizon radius rH = 0.1. a) Angular momentum J , b) horizon mass MH versus horizon
angular velocity Ω.

total angular momentum is non-vanishing (type II). When λ > 1, counterrotating

configurations appear, for which the horizon angular velocity and the total angular

momentum have opposite signs, ΩJ < 0 (type III). When λ ≥ 2, black holes with

rotating horizon but vanishing total angular momentum appear (type IV). For λ ≥ 2

thus four types of rotating black holes are present (Fig. 1a).

In addition, EMCS black holes with negative horizon mass (Fig. 1b) arise, their

total mass remaining always positive. Moreover, when λ > 2 EMCS black holes are

not completely characterized by their global charges, giving rise to a violation of

uniqueness, and their gyromagnetic ratio may take any real value, including zero.

Further details of these intriguing new features may be found in Ref. [10].
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