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Assessing the stability of higher-dimensional rotating black holes requires a study of
linearized gravitational perturbations around such backgrounds. We study perturbations
of Myers-Perry black holes with equal angular momenta in an odd number of dimensions
(greater than five), allowing for a cosmological constant. Such black exhibit enhanced
symmetry: they are cohomogeneity-one solutions. This allows gravitational perturbations
to be decomposed into scalar, vector and tensor types. The equations of motion for tensor
perturbations reduce to a single radial equation. In the asymptotically flat case we find
no evidence of any instability associated with tensor perturbations. In the asymptotically
anti-de Sitter case, we demonstrate the existence of a superradiant instability that sets in
precisely when the angular velocity of the black hole exceeds the speed of light from the
point of view of the conformal boundary. We suggest that the endpoint of the instability
may be a stationary, nonaxisymmetric black hole.

1. Introduction

Exact solutions describing higher-dimensional rotating black holes have been known

for a long time1 but the question of their classical stability is still unresolved. There

are arguments suggesting that a Myers-Perry (MP) black hole will be unstable for

sufficiently large angular momentum in five2 and higher3 dimensions. However, a

convincing demonstration of this requires a study of linearized gravitational fluctu-

ations around such backgrounds. This has only been done in the limit of vanishing

angular momentum, i.e., for higher-dimensional Schwarzschild black holes.4–6

Another context in which stability of higher dimensional rotating black holes has

been discussed is the AdS/CFT correspondence.7 The MP solutions have been gen-

eralized to include a cosmological constant.8,9 There is a qualitative argument that

rotating, asymptotically AdS black holes might exhibit a superradiant instability.10

The idea (inspired by the corresponding instability of a Kerr black hole in the pres-

ence of a massive scalar field11–13) is that superradiant perturbations are trapped
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by the AdS potential barrier at infinity and reflected towards the black hole where

they get amplified and the process repeats. It can be proved that no such instability

is present for black holes rotating at, or slower than, the speed of light relative to

the conformal boundary10 (essentially because superradiant modes do not fit into

the AdS ”box”14) but an instability may well be present for more rapidly rotating

holes. The only way to find out is to study perturbations of such black holes. This

has been done for scalar field perturbations of small four-dimensional Kerr-AdS

black holes15 but not for gravitational perturbations, large black holes, or higher

dimensions.

In four dimensions, gravitational perturbations of rotating black holes can be

studied analytically. The tractability of the problem arises from two miraculous

properties of the Kerr metric. Firstly, the equations of motion for gravitational

perturbations can be decoupled and reduced to a PDE for a single scalar quantity.16

Secondly, this equation can be reduced to ODEs governing the radial and angular

behaviour by separation of variables. It is known that this separability property of

the Kerr metric does extend to some of the higher-dimensional MP metrics,17–19

and MP metrics with a cosmological constant.20 This makes the study of scalar field

perturbations in such backgrounds tractable. However, so far no-one has succeeded

in decoupling the equations of motion governing gravitational perturbations of MP

black holes.

We have made progress with this problem21 by considering the subclass of MP

black holes for which the number of space-time dimensions is odd and the angular

momenta are all equal, allowing for a cosmological constant. Such black holes are

cohomogeneity-1: the metric depends only on a radial coordinate. In D = 2N + 3

dimensions, the isometry group is enhanced from R × U(1)N+1 to R × U(N + 1)

where R denotes time translations. The horizon is a homogeneously squashed S2N+1

viewed as a S1 bundle over CPN . The symmetry enhancement allows us to classify

gravitational pertubations into scalar, vector and tensor types according to how

they transform under isometries of CPN . We consider the tensor perturbations.

These do not exist for N = 1 so we restrict ourselves to N > 1, i.e., spacetime di-

mensionality seven or greater. After separation of variables, the equations of motion

for tensor perturbations reduce to a single ODE governing the radial behaviour. For

completeness, we also consider massive scalar field perturbations of these black holes

(for N ≥ 1). We shall present a unified form for the radial equation that applies

both to scalar fields and to tensor gravitational perturbations.

Asymptotically flat, cohomogeneity-1 Myers-Perry black holes exhibit an upper

bound on their angular momentum for a given mass. Solutions saturating this bound

have a regular but degenerate horizon. This means that the black holes considered

here behave rather differently from ones for which some of the angular momenta

vanish, which are the ones expected to exhibit a gravitational instability.2,3 So

there is no a priori reason to expect any instability to exist for the MP black holes

considered in this paper and indeed we find no instability.

In the asymptotically anti-de Sitter case, there is also an upper bound on angular
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momentum for given mass and black holes saturating this bound have a regular but

degenerate horizon. These extremal solutions always rotate faster than light and

can be arbitrarily large compared with the AdS radius. The argument of Ref. 10

suggests that black holes near to extremality might be unstable to losing energy and

angular momentum into superradiant gravitational and scalar field perturbations.

We shall demonstrate that this is indeed the case. Moreover, we shall show that

this instability appears as soon as the angular velocity of the hole exceeds the speed

of light, i.e., as soon as the stability argument of Ref. 10 fails. The instability is a

short distance instability in the sense that unstable modes exist for all wavelengths

below a certain critical value determined mainly by the angular velocity of the hole.

However, amongst unstable modes, the shortest wavelength modes are the least

unstable.

Having demonstrated the existence of an instability, it is natural to ask what

the endpoint of the instability is. We propose that a black hole that suffers from

this superradiant instability will evolve to a stationary, nonaxisymmetric black hole

solution. The motivation behind our proposal will be explained at the end of this

paper.

This paper summarizes the results that we obtained in Ref. 21. The reader is

urged to consult that paper for further details. However, section 3.1 contains new

material that will be explained in more detail in a future paper.22

2. The background solution

The higher-dimensional generalization of the Kerr solution was obtained by Myers

and Perry1 and subsequently generalized to include a cosmological constant in five8

and higher9 dimensions. It is parameterized by a mass parameter M and [(D−1)/2]

angular momentum parameters ai. In D = 2N + 3 dimensions with equal rotation

parameters ai = a the solution is cohomogeneity 1. The metric can be written as:

ds2 = −f(r)2dt2 + g(r)2dr2 + h(r)2[dψ +Aadx
a − Ω(r)dt]2 + r2ĝabdx

adxb (1)

g(r)2 =

(

1 +
r2

ℓ2
− 2MΞ

r2N
+

2Ma2

r2N+2

)−1

, h(r)2 = r2
(

1 +
2Ma2

r2N+2

)

, (2)

f(r) =
r

g(r)h(r)
, Ω(r) =

2Ma

r2Nh2
, Ξ = 1 − a2

ℓ2
, (3)

where ĝab is the Fubini-Study metric on CPN with Ricci tensor R̂ab = 2(N +1)ĝab,

and A = Aadx
a is a 1-form such that J = 1

2dA is the Kähler form on CPN . This

way of writing the metric arises from the fact that S2N+1 can be written as an S1

fibre over CPN . The fibre is parameterized by the coordinate ψ, which has period

2π.

The spacetime metric satisfies Rµν = −ℓ−2(D−1)gµν . Asymptotically, the solu-

tion approaches anti-de Sitter space with radius of curvature ℓ. An asymptotically
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flat Myers-Perry black hole can be recovered by taking ℓ → ∞. The event horizon

located at r = r+ (the largest real root of g−2) is a Killing horizon of ξ = ∂t+ΩH∂ψ,

where the angular velocity of the horizon is:

ΩH =
2Ma

r2N+2
+ + 2Ma2

. (4)

The mass E and angular momentum J (defined with respect to ∂ψ) are23

E =
A2N+1

4πG
M

(

N +
1

2
+

a2

2ℓ2

)

, J =
A2N+1

4πG
(N + 1)Ma (5)

where A2N+1 is the area of a unit 2N + 1 sphere.

As written the metric is parameterised by (M,a). We shall assume a ≥ 0, which

can always be achieved by t → −t if necessary. Sometimes it will be convenient to

work with more ”physical” variables (ΩH , r+). Fortunately one can easily invert for

(M,a) in terms of (ΩH , r+):

M =
r2N+ (1 + r2+ℓ

−2)2

2(1 + r2+ℓ
−2 − r2+Ω2

H)
, a =

r2+ΩH

1 + r2+ℓ
−2
. (6)

For given r+, existence of a regular event horizon imposes an upper bound on ΩH :

ΩH ≤ 1

ℓ

√

1 +
Nℓ2

(N + 1)r2+
. (7)

The extremal solution saturating this bound has a regular but degenerate horizon.

In the asymptotically AdS case, the ”co-rotating” Killing vector field ξ is timelike

everywhere outside the horizon if ΩH ≤ 1/ℓ but becomes spacelike in a neighbour-

hood of infinity otherwise. With respect to the metric on the conformal boundary,

ξ is timelike if ΩH < 1/ℓ, null if ΩH = 1/ℓ and spacelike otherwise. For this reason,

black holes with ΩH > 1/ℓ are said to be rotating faster than light. Note that the

extremal black holes always rotate faster than light, and that such black holes can

be arbitrarily large compared with the AdS length.

3. Perturbation equations

3.1. Scalar, vector, tensor

As explained in the introduction, we can make progress with the study of grav-

itational perturbations of these cohomogeneity-one black holes by exploiting the

large symmetry group. Specifically, we can decompose a general gravitational per-

turbation into scalar, vector and tensor perturbations on CPN . This is familar from

perturbations of spherically symmetric black holes, where one performs an analo-

gous decomposition on a sphere.5 However, there are two additional complications

present here.

It is natural to decompose any perturbation of our black hole into Fourier modes

around the S1 fibre parameterized by ψ, i.e., we assume that the perturbation is

proportional to exp(imψ) with m an integer. To understand the resulting equations,
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it is convenient to imagine performing a dimensional reduction on this S1, i.e.,

reduce S2N+1 to CPN . This reduction gives rise to a Kaluza-Klein magnetic field

A, and the perturbation carries charge m with respect to this field. Hence we will

need to understand charged perturbations on CPN . This means that we will need

to work with the gauge-covariant derivative D which acts on a field of charge m as

Da ≡ ∇a − imAa, (8)

with ∇ the Levi-Civita connection on CPN .

The second complication comes from the fact that on a sphere (of dimension

higher than two) there is only one second rank tensor invariant under the isometry

group, namely the metric. However, on CPN there are two such tensors: the metric

and the Kähler form J . Hence in defining what we mean by scalar, vector and

tensor, we have to consider contractions with both of these objects.

Consider a general metric perturbation:

gµν → gµν + hµν . (9)

Obviously, htt, htr, htψ etc. transform as scalars on CPN . More interesting are

components such as va ≡ hta, which carry a vector index a. It can be shown22 that

va can be decomposed as

va = wa + Daφ+ Ja
bDbψ, (10)

where φ and ψ are scalars, and wa obeys the ”doubly transverse” conditions:

Dava = JabDavb = 0. (11)

where we raise indices with the metric on CPN . We can therefore decompose hta
into a ”vector part” wa and a ”scalar part” corresponding to φ, ψ. The same can be

done for hψa and hra. The important thing to note is that the vector parts obey two

transversality conditions, arising from the fact that we have two invariant tensors.

Finally, consider hab. It can be shown22 that hab can be decomposed as

hab = Yab + . . . , (12)

where the ellipsis denotes vector and scalar parts of hab, i.e., terms that can be

written in terms of derivatives of vectors (analagous to wa) and scalars, and Yab is

the ”tensor part” of the perturbation, defined by the (traceless, doubly transverse)

conditions

Y aa = DaYab = 0 = JabDaYbc = 0. (13)

The reason for performing this decomposition of a general perturbation into scalar,

vector and tensor types is that the linearized Einstein equations respect the decom-

position, i.e., the equations of motion for scalar, vector and tensor perturbations

decouple from each other. The decomposition of a general metric perturbation will

give rise to many scalars, and several vectors. However, there is only a single ten-

sor, so tensor perturbations are the simplest to study. We shall restrict attention

to tensor perturbations henceforth. Tensor perturbations do not exist for N = 1

(recall CP 1 = S2) so we shall assume N > 1.
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3.2. Tensor equation of motion

A general separable tensor perturbation takes the form

htµ = hrµ = hψµ = 0, hab = Re
[

e−iωt+imψh(r)−1/2r2−NΨ(r)Yab(x)
]

, (14)

where Yab(x) is a charge m tensor (in the above sense, i.e., obeying equation 13)

on CPN . We shall assume that Yab can be expanded in eigenfunctions of a suit-

able Laplace-type operator, namely the gauge-covariant version of the Lichnerowicz

operator on CPN :

∆A
LYab = −2R̂acbdY

cd − D2Yab + 4(N + 1)Yab, (15)

where R̂abcd is the Riemann tensor of CPN . Note that ∆A
L maps tensors to tensors.

There is no loss of generality in assume that Yab is an eigenfunction of ∆A
L with

eigenvalue λ, i.e., a tensor harmonic.

Define a map J by

(J Y )ab = J c
a J

d
b Ycd. (16)

This maps tensors to tensors, and has eigenvalues 1,−1 whose eigenvectors we re-

fer to as hermitian or anti-hermitian respectively. It commutes with ∆A
L . Hence we

can simultaneously diagonalize J and ∆A
L . This implies that we can classify eigen-

functions of ∆A
L into hermitian and anti-hermitian. Further, in the antihermitian

case, one can distinguish between Yab of type (2, 0) and (0, 2), which we define by

J c
a Ycb = ǫiYab, where ǫ = +1,−1 for (2, 0) and (0, 2) harmonics respectively.

Using these results, the linearized Einstein equation for a tensor perturbation

reduces to the radial equation21

−f
g

d

dr

(

f

g

dΨ

dr

)

+ VΨ = 0, (17)

where the ”potential” V (r) is defined by

V (r) = V0(r)−(ω−mΩ)2+f2

(

m2

h2
+

4(1 − σ)h2

r4
+
λ− 4(N + 1) − 2ǫ(1 + σ)m

r2

)

,

(18)

with σ = 1 or −1 for anti-hermitian and hermitian Yab respectively, λ is the eigen-

value of ∆A
L , and V0 is defined by

V0 =
f2

√
h

rN+1

d

dr

[

f2h

r

d

dr
(
√
hrN )

]

. (19)

The next step is to determine the eigenvalues λ of tensor harmonics.

3.3. Tensor harmonics

Recall that there are no tensor harmonics on CP 1. Uncharged tensor harmonics

on CP 2 have been considered previously.24,25 It is straightforward to generalize
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the results to include charge.21 The result is that doubly transverse charged tensor

harmonics must be anti-hermitian (σ = 1). The eigenvalue spectrum is

N = 2 : λ = l(l+ 4) + 12 −m2 + 4ǫm, l = 2k + |6 − ǫm| (20)

where

k =







0, 1, 2, . . . if ǫm ≤ 4

1, 2, 3 . . . if ǫm = 5

2, 3, 4, . . . if ǫm ≥ 6

(21)

This implies that the minimum value of l is lmin = 6−ǫm if ǫm ≤ 3 and lmin = ǫm−2

for ǫm ≥ 4. Conversely, for given l, the allowed values of m are given by

ǫm = 6 − l, 6 − l + 2, 6 − l + 4, . . . , l, l + 2, l = 2, 3, 4, . . . (22)

These charged tensor harmonics on CPN can be lifted to (uncharged) eigenfunc-

tions of the Lichnerowicz operator on S2N+1 where l is the usual ”total angular

momentum” quantum number.a Note l ≥ 2, as expected for tensor harmonics.

We can obtain a general formula for the charged tensor eigenvalues for N ≥ 2

by comparing our results with those for non-rotating black holes. If we set a = 0

then we have a Schwarzschild(-AdS) black hole and our tensor perturbations should

form a subset of the tensor perturbations (on the sphere) considered in Refs 4–6.

Demanding agreement between our results and those of Ref. 6 yields

λ = l(l + 2N) + 4N + 4σ −m2 + 2ǫ(1 + σ)m. (23)

This is consistent with the above results forN = 2. The limitation of this approach is

that it does not tell us which values of l are permitted beyond the obvious restriction

l ≥ 2.

3.4. Unified potential

To summarize, the equation of motion for tensor gravitational perturbations can be

separated and reduced to a single radial equation (17). The same thing can be done

for scalar field perturbations, and it is interesting to compare the results. Consider

a scalar field obeying the Klein-Gordan equation

∇2Φ − µ2Φ = 0. (24)

Take a separable Ansatz:

Φ = e−iωt+imψh(r)−1/2r−NΨ(r)Y (x), (25)

where Y is a charged scalar eigenfunction of −D2 on CPN . Then the Klein-Gordan

equation reduces to a radial equation of exactly the same form as (17). The only

difference between scalar field and tensor gravitational perturbations shows up in

aNote that m =
∑

i
mi where (m1,m2, . . .) is the weight vector of SO(2N + 2) corresponding to

the harmonic in question.
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the potential V (r). This can be written in a unified form so that it applies to both

types of perturbation21

V = V0+f2µ2−(ω−mΩ)2+
f2

r2

[

l(l+ 2N) −m2

(

1 − r2

h2

)

+ 4(1 − σ)

(

h2

r2
− 1

)]

,

(26)

where V0 is defined by (19). For scalar field perturbations, N ≥ 1, σ = 1 and

l = 2k + |m|, k = 0, 1, 2, . . .. For gravitational pertubations, N ≥ 2, µ = 0 and the

permissible values of σ, l are discussed above.

Note that anti-hermitian (σ = 1) gravitational perturbations bey exactly the

same equation as a massless scalar field. Therefore, one might think that results

concerning the stability of (asymptotically flat) MP black holes against massless

scalar field perturbations18,26,27 would imply stability with respect to σ = 1 grav-

itational perturbations. However, these results concern black holes in five18 and

six26,27 dimensions with a single non-vanishing angular momentum whereas we are

interested in black holes in seven or more odd dimensions with all angular momenta

equal and non-vanishing. It appears that scalar field perturbations of such black

holes have not been considered previously. Furthermore, there is a difference be-

tween scalar field and gravitational perturbations: the lower bound on l is different

for the two cases. (For N = 2, the lower bound for scalars can be either less than, or

greater than, the lower bound for doubly transverse tensors, according to the value

of m.)

Note that by introducing a ”tortoise” coordinate x(r) defined by

dx

dr
=
g

f
, (27)

we can convert the radial equation (17) into a 1-dimensional time-independent

Schrödinger equation:

− d2

dx2
Ψ + VΨ = 0. (28)

4. Stability analysis

4.1. Boundary conditions

The horizon is located at r = r+, which corresponds to x→ −∞:

x ∼ 1

α
log

(

r − r+
r+

)

, (29)

where

α =
r+(g−2)′(r+)

h(r+)
. (30)

At the horizon, V → −(ω−mΩH)2 so the solutions behave as exp (±i(ω −mΩH)x).

Regularity on the future horizon requires that we choose the lower sign, so we have

the boundary condition

Ψ = exp (−i(ω −mΩH)x)Φ, (31)
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where Φ(r) is smooth at r = r+. Substituting this into the Schrödinger equation

and expanding around r = r+ gives (choosing Φ(r+) = 1)

Φ = 1 +
V ′(r+)(r − r+)

α2 − 2iα(ω −mΩH)
+ O

(

(r − r+)2
)

. (32)

In the asymptotically flat case, we have

x = r + O
(

r−2N+1
)

as r → ∞. (33)

The general solution as r → ∞ is a superposition of outgoing and incoming waves

(proportional to eikr and e−ikr respectively):

Ψ ∼
√
kr
[

ZoutH
(1)
l+N (kr) + ZinH

(2)
l+N (kr)

]

, N ≥ 2 (34)

where H(i) are Hankel functions and k =
√

ω2 − µ2. In the N = 1 case, the solution

is as above except the order of the Hankel functions is now [(l + 1)2 + 2M(µ2 −
2ω2)]1/2. In the asymptotically flat case, we are mainly interested in gravitational

perturbations for which µ = 0 and k = ω.

In the asymptotically AdS case, we have x ∼ −ℓ2/r → 0 as r → ∞. The

asymptotic behaviour of the potential is

V ∼ V0 +
r2µ2

ℓ2
∼ r2

ℓ4

(

(N + 1)2 − 1

4
+ µ2ℓ2

)

, (35)

with corresponding asymptotic solutions Ψ ∼ r−1/2±
√

(N+1)2+µ2ℓ2 . Choosing the

normalizable solution corresponds to the boundary condition

Ψ ∼ r−1/2−
√

(N+1)2+µ2ℓ2 as r → ∞. (36)

For stability of the AdS background we demand that a scalar field obeys the Bre-

itenlöhner-Freedman bound31

µ2 ≥ − (N + 1)2

ℓ2
. (37)

A linearized instability of the black hole would correspond to a solution of the

radial equation that is regular on the future horizon and vanishing at infinity, with

Im(ω) > 0. In the asymptotically flat case this requires Zin = 0. Note that such a

solution vanishes exponentially at the horizon.

4.2. The case m = 0

It is easy to show that there can be no instability (whether asymptotically flat or

asymptotically AdS) when m = 0 and µ2 ≥ 0. If m = 0 then it is natural to consider

the potential Ṽ = V +ω2, which does not depend on ω. The radial equation becomes

− d2

dx2
Ψ(x) + Ṽ (x)Ψ(x) = ω2Ψ(x) (m = 0). (38)

Assume that Ψ describes an unstable mode, so Im(ω) > 0 and Ψ vanishes at the

horizon and at infinity as described above. The differential operator on the LHS
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of (38) is self-adjoint on such functions and hence ω2 must be real so ω is pure

imaginary and ω2 is negative. A simple argument21 reveals that V0 is positive. If

we assume µ2 ≥ 0 then the remaining terms in Ṽ are non-negative so Ṽ is positive.

Hence ω2 must be positive, which is a contradiction.

For AdS black holes, it would be interesting to see if this conclusion could

be extended to tachyonic scalars satisfying the Breitenlohner-Freedman bound by

combining our argument with that of Ref. 31.

4.3. Strategy

We can look for unstable modes using the strategy adopted by Press and Teukolsky

for the Kerr black hole.28 We expect the black hole to be stable for small angular

momentum because we know that the higher-dimensional Schwarzschild black hole is

stable.6 Hence, for small angular velocity, the only admissible solutions of the radial

equation must have negative imaginary part, i.e., they are quasi-normal modes. If

an instability is to appear as the angular velocity increases then one of these quasi-

normal modes must cross the real axis in the complex ω plane.b Hence we expect

the onset of instability to be indicated by the appearance of a real frequency mode

at a critical value of the angular velocity. The strategy is to look for such a mode.

By continuity it must have Zin = 0 in the asymptotically flat case, i.e., it must

be purely outgoing at infinity. In the AdS case it must obey the ”normalizable”

boundary condition (36).

Note that the radial equation is invariant under ω → −ω and m→ −m and, for

tensors, ǫ → −ǫ.c Hence we can assume ω ≥ 0. Following Press and Teukolsky,30

consider the Wronskian of Ψ and Ψ̄ for real ω. This must be constant so we obtain

Im
[

Ψ̄∂xΨ
]x1

x2

= 0, (39)

for any x1 and x2. Taking x1 at the horizon and x2 at infinity and using the boundary

condition at the horizon and infinity gives, for the (massless) asymptotically flat

case,

(mΩH − ω) =
2ω

π

(

|Zout|2 − |Zin|2
)

. (40)

Hence a purely outgoing mode must have

0 ≤ ω ≤ mΩH (asymptotically flat). (41)

In other words, the mode must be superradiant. In the AdS case, the LHS is un-

changed but the term at infinity vanishes and we must have

ω = mΩH (asymptotically AdS). (42)

bVarious mathematical subtleties such as modes coming in from infinity might invalidate this
statement but such subtleties do not occur for Kerr29 and we shall ignore this possibility here.
cThis just corresponds to complex conjugation of the solution. This invariance arises from a discrete
symmetry of the background which, in the coordinates of Ref. 9 is t → −t, φi → −φi. In our
coordinates this amounts to t→ −t, ψ → −ψ and A→ −A.
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Physically, this is simply the statement that there cannot be a constant flux of

radiation through the horizon if the flux at infinity vanishes. Note that for both

cases, we must have m ≥ 0 since ΩH ≥ 0.

We shall discuss the asymptotically AdS case first because the fact that we only

have to consider a single value of ω makes this case simpler to analyse than the

asymptotically flat case, for which we have to consider a range of values for ω.

5. Asymptotically anti-de Sitter black holes

5.1. Form of the potential and behaviour of solutions

Set ω = mΩH > 0. The potential vanishes at the horizon and is monotonically

increasing just outside the horizon. For large r, the potential increasesd proportional

to r2. What happens in between depends on the values of the parameters. For small

ω, V is positive everywhere. However, for sufficiently large ω, there is a ”classically

allowed”e region in which V is negative. In more detail: V has roots at r = r1, r2.

The potential is positive for r+ < r < r1, negative for r1 < r < r2 and positive

for r > r2, i.e., there is a potential barrier separating the classically allowed region

where V is negative from the horizon.

Note that, in the AdS case considered here, the initial data Ψ(r+) and Ψ′(r+)

are real and positive (since ω = mΩH). Hence Ψ is real everywhere. It is easy to

see that Ψ will simply increase monotonically if V is positive everywhere. Hence we

need V to be negative somewhere for an acceptable solution of the radial equation to

exist. The solution Ψ will increase monotonically in the potential barrier, oscillate in

the classically allowed region, and then match onto a sum of growing and decayingf

terms at large r. We need to tune ΩH until the coefficient of the growing mode

vanishes, i.e., until we obtain a ”bound state” solution of the radial equation.

5.2. Small AdS black holes

Consider the case r+ ≪ ℓ. In this case, one can use matching techniques to solve the

radial equation. One finds that a solution obeying the boundary conditions exists

only for discrete values of ωℓ. Since ω = mΩH , this translates into a condition on

ΩH :21

ΩHℓ =
l +N + 1 +

√

(N + 1)2 + µ2ℓ2 + 2p

m
, p = 0, 1, 2, . . . (43)

The solutions with p > 0 correspond to ”excited states” for which the solution of

the radial equation oscillates (with p+ 1 extrema) before approaching zero at large

dIf µ2 is close to the Breitenlonher-Freedman bound then the coefficient of proportionality is
negative but we shan’t worry about this and our results for small black holes suggest that it
doesn’t change the qualitative behaviour of solutions.
eOf course, everything we are doing is classical but since we have written the radial equation in the
form of a Schrödinger equation, we can borrow terminology such as ”classically allowed”, ”bound
state” etc. from quantum mechanics.
fMore precisely: non-normalizable and normalizable.
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r. We are interested in the onset of instability, corresponding to the smallest value

of ΩHℓ for which a solution exists, so we are mainly interested in p = 0.

For scalars, we have l ≥ m so, for given m, the smallest value of ΩH for which

we have a solution is

ΩHℓ = 1 +
N + 1 +

√

(N + 1)2 + µ2ℓ2

m
. (44)

This is the critical value of ΩH beyond which modes with angular quantum number

m become unstable. Note that it always exceeds 1/ℓ, consistent with the proof of

stability for ΩH ≤ 1/ℓ given in Ref. 10. However, this proof has been criticized32

because it assumes the dominant energy condition, which is violated if µ2 < 0.

Our result shows that, for small black holes, this does not matter so long as the

Breitenlöhner-Freedman bound is satisfied.

Note that the critical value for ΩH tends to 1/ℓ from above as m → ∞. This

proves that, for small black holes at least, the instability sets in as soon as ΩH
exceeds 1/ℓ, with the shortest wavelength modes becoming unstable first.

Now consider gravitational pertubations, for which the threshold of stability

occurs at

ΩHℓ =
l + 2N + 2

m
. (45)

For N = 2, taking l = lmin(m) and ǫ = 1, this evaluates to 11, 5, 3 for m = 1, 2, 3

and 1 + 4/m for m ≥ 4. (Taking ǫ = −1 just makes lmin bigger.) So the conclusion

is the same as for scalar field perturbations: a superradiant gravitational instability

sets in as soon as the angular velocity exceeds the speed of light, with the shortest

wavelength modes becoming unstable first.

5.3. Numerical results

In the context of the AdS/CFT correspondence, we have to consider a higher di-

mensional spacetime consisting of the product of the black hole space-time with a

compact internal space (e.g. a sphere). It is believed that small AdS black holes are

unstable with respect to the Gregory-Laflamme instability33 under which they are

expected to localize on the internal space. This means that, although small black

holes with ΩHℓ ≤ 1 do not suffer from a superradiant instability, they are never-

theless unstable. In order to eliminate the GL instability we have to extend our

results to large AdS black holes, i.e., r+ > ℓ. This can be done by solving the radial

equation numerically.21

Our numerical results show that the critical value of ΩHℓ is always greater than

1, and tends to 1 as m → ∞. The interpretation is exactly the same as for small

black holes: for any given r+, if we start from ΩH = 0 and increase ΩH then as

soon as ΩHℓ exceeds 1, the black hole will become unstable to all perturbations for

which m exceeds some critical value. In the next section we shall demonstrate this

analytically.
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5.4. WKB analysis

In this section we consider both scalar field and gravitational perturbations gov-

erned by the effective Schrödinger equation with potential (26). As before, we are

interested in modes at the threshold of instability so ω = mΩH . The strategy is to

look at the potential for large m (and hence large ω). In this limit, WKB techniques

can be used.g The result is that the critical value of ΩH is given by21

ΩHℓ ≈ 1 +
1

m

(

l −m+N + 1 +

√

(N + 1)2 − 1

4
+ µ2ℓ2 + 2p

)

. (46)

This formula is valid for large m with l −m = O(1). p is a non-negative integer.

Once again, there are ”excited state” solutions corresponding to positive p, p = 0

corresponds to the threshold of instability.

The coefficient of 1/m in (46) is positive (at least in all cases for which we know

lmin) so once again we see ΩHℓ → 1+ as m → ∞ so, irrespective of the size of the

black hole, once its angular velocity exceeds the speed of light it becomes unstable

to perturbations of arbitrarily short wavelength.

5.5. WKB calculation of unstable modes

So far, we have been looking for real frequency modes, whose existence indicates

the onset of instability. However, the WKB approach can also be used to determine

unstable modes directly. This has been used previously in a study of the superradiant

instability of the Kerr black hole in the presence of a massive scalar field.12 We allow

ω to be complex: ω = ωR+iωI and look for a suitable solution of the radial equation

in the WKB approximation, which we expect to be valid for large m.

Assuming ωR < mΩH and l−m = O(1) we obtain the quantization condition21

ωRℓ

m
≈ 1 +

1

m

(

l−m+N + 1 +

√

(N + 1)2 − 1

4
+ µ2ℓ2 + 2p

)

, p = 0, 1, 2, . . .

(47)

and we can bound21

0 < ωIℓ < α exp(−βm) (48)

for some positive constants α, β. We see that, although large m modes are the

first to become unstable when ΩHℓ exceeds 1, the growth time of the instability

is exponentially large in m so these modes are the least unstable. This suggests

that the most unstable modes will be those for which m is not particularly large. It

would be interesting to calculate ωI for such modes.

gStrictly speaking, the WKB approximation should only be valid for large µ. For gravitational
perturbations we might not expect WKB to work very well. However, the same remark applies to

the calculation of black hole quasi-normal modes, where WKB has been found to be accurate.34

We shall see that the WKB results are in good agreement with our numerical results for µ = 0.
In any case, the WKB method is certainly reliable for sufficiently massive scalar fields.
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6. Asymptotically flat black holes

6.1. Introduction

We know that a mode at the threshold of instability must obey 0 ≤ ω ≤ mΩH ,

i.e., it is superradiant. The only known way that superradiant modes can actually

lead to an instability is if they can be trapped by the potential at infinity, i.e., they

must be bound states. This would require a local minimum in V , as in the AdS

case, or for a massive scalar field in four dimensions.h In all cases that we have

examined, the qualitative form of the potential for µ = 0 is: V → −(ω−mΩH)2 as

x→ −∞, then V increases to a positive maximum and decreases to −ω2 as x→ ∞.

It appears that a local minimum in V is not possible so there is no obvious sign of

any gravitational instability apparent from our radial equation.

This qualitative argument is no substitute for a quantitative study. We shall

analyse the radial equation in two cases: first for large m and ω using the WKB

method and then numerically for D = 7.

6.2. WKB approximation

Consider large m with r+ω/m fixed and l ∼ lmin so l/m → 1. Qualitatively, the

form of V is as follows.21 It takes the value −(ω−mΩH)2 at the horizon, increases

to a positive maximum and then decreases to −ω2 at infinity. In other words, there

is a potential barrier of height proportional to m2 separating the classically allowed

region near infinity from the classically allowed region near the horizon. The WKB

method will then give |Zout/Zin| ≈ 1. However, as argued above, a mode at the

threshold of instability will have |Zout/Zin| → ∞. We conclude that no such mode

exists for large m and ω.

6.3. Numerical results: asymptotically flat case

We shall only consider gravitational perturbations in D = 7 so µ = 0, N = 2.

For given l,m, our strategy (following Ref. 28) is to start with small ΩH and

search the interval 0 ≤ ω ≤ mΩH for a solution of the radial equation that is regular

on the future horizon and outgoing at infinity. This is then repeated for increasing

values of ΩH up to the maximum value.

A convenient object to consider is the ratio

Z ≡ |Zout|
|Zin|

= lim
r→∞

|∂rΨ + iωΨ|
|∂rΨ − iωΨ| . (49)

We are looking for ω for which this ratio diverges, corresponding to a purely outgoing

solution.

hIn higher dimensions, it appears that even a mass term for a scalar is not enough to lead to a
superradiant instability, at least for MP black holes with a single non-vanishing angular momen-
tum.35
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In all cases we have examined, the qualitative form of the potential is the same

as we found in the WKB analysis above, i.e., a potential barrier with a positive

maximum separates the classically allowed regions near the horizon and far from

the black hole. The corresponding behaviour of the solution Ψ is: oscillation near

the horizon, exponential growth in the potential barrier region and then oscillation

out to infinity. If the potential barrier is large then this implies that the amplitude

of oscillation far from the black hole will be large. However, we are looking for a

mode with Zin = 0. From (40), such a mode obeys

lim
r→∞

|Ψ|2 =
mΩH − ω

ω
. (50)

Hence, unless ω is very small, such a mode will not have a large amplitude. Hence

it seems very unlikely that we will find a suitable mode when the potential barrier

is large. Phrasing the argument slightly differently, if Ψ is large then Zin and/or

Zout must be large compared with the left hand side of equation (40), which implies

Z ≈ 1. More physically, if the potential barrier is large then one expects almost

perfect reflection and very little transmission, so the amplitude of Ψ is much greater

far from the black hole than near the horizon.

This argument suggests that we should examine the case for which the potential

barrier is smallest. The potential barrier is minimized when l is as small as possible

and m as large as possible. The most favourable case (using (22)) is therefore likely

to be l = 2, ǫ = 1, m = 4. Our numerical results are shown in figure 1, where

we plot Z against ω/(mΩH) for ΩH/Ωmax = 0.5, 0.7, 0.9, 0.99, 0.999 where Ωmax =
√

N/(N + 1)/r+ is the upper bound on ΩH . The curves have the same qualitative

shape as for the Kerr black hole,28 i.e., Z is very close to 1 for small ω, then increases

to a maximum near ω = mΩH and decreases back to 1 at ω = mΩH (the latter

property follows from equation (40)). The position of the maximum tends towards

ω = mΩH as ΩH → Ωmax. The largest value for Z is Z = 1.115 so there is no

sign of Z diverging anywhere, as would be required for an instability. Note that

the amplification of energy flux in superradiant scattering is given by Z2 so the

maximum amplification apparent in our data is about 24%, and is achieved as the

black hole tends to extremality and ω → mΩH−. This is just as for Kerr, although

for Kerr, the maximum amplification is much greater: 138%.30

We have repeated our analysis for other values of (l,m). The results are qualita-

tively similar to the case we have just discussed. For ΩH/Ωmax = 0.99, the largest

value of Z obtained for ǫ = 1 and (l,m) = (3, 5), (3, 3) was 1.056, 1.000 respectively,

reflecting the fact that decreasingm tends to increase the potential barrier. In figure

2 we exhibit how Z varies with l with m = mmax(l) = l+ 2. The largest value of Z

occurs for the l = 2, m = 4 case discussed above, and Z decreases monotonically to

1 as l increases, in agreement with our WKB analysis.
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Fig. 1. Plots of Z againt ω/(mΩH ) for (from bottom to top) ΩH/Ωmax = 0.5, 0.7, 0.9, 0.99, 0.999
with ǫ = 1, l = 2, m = 4. Note that Z = 1 for ω = mΩH but this point has been deleted from the
topmost two curves to make the figure clearer.

1.08

5.0

1.0

12.510.0

1.06

7.5

1.04

1.02

2.5

Z

l

Fig. 2. Plot of Z against l = 2, 3, . . . for m = mmax = l+2, ǫ = 1, ΩH/Ωmax = 0.99, ω/(mΩH ) =
0.99.
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7. Discussion

We have shown that there exists a class of higher-dimensional rotating black hole

solutions for which linearized gravitational perturbations can be studied analyti-

cally. We have concentrated on the particular case of tensor modes. The equation

of motion for such modes reduces to a single ODE governing the behaviour in the

radial direction. In the asymptotically flat case, our analysis of this equation shows

no evidence of any instability of the black holes.

We have studied the case of asymptotically anti-de Sitter black holes in some

detail. Our main result is that the superradiant instability of such black holes dis-

cussed in Ref. 10 occurs precisely when the angular velocity of the black hole exceeds

the speed of light (in the sense that the co-rotating Killing field becomes space-like

on the conformal boundary). In other words, the instability occurs precisely when

the stability argument of Ref. 10 fails. Our results for small AdS black holes also

enable us to address a loop-hole in the proof of Ref. 10, namely that it could be

invalidated by the presence of a tachyonic scalar field (obeying the Breitenlohner-

Freedman bound), which violates the dominant energy condition. For small black

holes at least, such scalars do not behave any differently from more massive scalars,

i.e., the threshold of instability is unaffected. It would be interesting to see whether

the methods of Refs 10 and 31 could be combined to give a more general proof of

this.

Something that has not been addressed in the literature is the end-point of the

instability of Ref. 10. For the super-radiant instability of a Kerr black hole in the

presence of a massive scalar, the evolution is clear: the black hole gradually loses

energy and angular momentum to bound superradiant modes of the scalar field.

These couple non-linearly to gravitational waves (and thereby to non-superradiant

modes of the scalar field) so this energy and angular momentum is ultimately radi-

ated to infinity. After a very long time the black hole will have lost all of its angular

momentum this way.

In the AdS case, the evolution of the instability must be rather different. A

black hole that is initially rotating faster than light will lose energy and angular

momentum into superradiant modes of all fields of the theory under consideration.

However, in AdS this cannot be radiated to infinity so instead the energy and

angular momentum in fields outside the black hole must accumulate over time and

backreaction will become important. If the system ultimately settles down to an

equilibrium state then this must be described by a new stationary, asymptotically

AdS black hole solution. Presumably the angular velocity of this new solution will

not exceed the speed of light. Note that this argument does not depend on the

details of the theory: it would be valid if gravity were the only field present, so

there should even exist new vacuum black hole solutions.

Further evidence for the existence of new solutions comes from our analysis of

modes at the threshold of instability. Since these have ω = mΩH , they are preserved

by the co-rotating Killing vector field ξ. However they break the symmetries gener-
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ated by ∂/∂t and ∂/∂ψ. The existence of these modes could indicate the presence of

new branches of solutions that bifurcate from the solutions of Refs 8,9 at the critical

(m-dependent) value of ΩH . The new solutions would not be invariant with respect

to ∂/∂t or ∂/∂ψ. In other words, they would not be stationary or axisymmetric.

However, ξ would still describe a symmetry. Since the bifurcation point occurs when

the original black hole is rotating faster than light, ξ would be spacelike near in-

finity but timelike near the horizon. So, near the bifurcation point, the new branch

of solutions would correspond to black holes that are not stationary in the usual

sense but nevertheless admit a Killing field that is timelike near the horizon. This

Killing field becomes spacelike outside an ”ergosphere” (this is what happens for

the co-rotating Killing field of the Kerr black hole). However, if such solutions do

exist, they are themselves rotating faster than light and therefore seem very likely

to be unstable.

What happens as one moves further away from a bifurcation point? Obviously

we can only speculate, but one possibility is that, if one moves sufficiently far along

one of the new branches of solutions, one reaches solutions for which ξ is timelike

everywhere outside the horizon. These would correspond to genuinely stationary

black holes which are nevertheless nonaxisymmetric. There would be no violation

of the theorem that a stationary black hole must be axisymmetric37 because this

theorem assumes that the stationary Killing field is not normal to the event horizon

whereas ξ is normal to the horizon of all the black holes we have been discussing.

If such black holes exist then it is natural to guess that these should be the new

solutions describing the endpoint of the superradiant instability.

The possibility of a black hole being stationary with respect to a Killing field that

does not approach the ”usual” generator of global AdS time translations deserves

further comment. Consider AdS5 in global coordinates:

ds2 = −
(

1 +
r2

ℓ2

)

dt2 +

(

1 +
r2

ℓ2

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2

)

. (51)

The generator of global time translations ∂/∂t is a globally timelike Killing field

whose norm diverges at infinity. Now consider the Killing field

∂

∂t
+

1

ℓ

∂

∂φ1
+

1

ℓ

∂

∂φ2
. (52)

This is globally timelike with constant norm. The same construction works in any

odd-dimensional AdS spacetime. Therefore there are (at least) two qualitatively

different ways that an odd-dimensional asymptotically AdS space-time can be sta-

tionary: the generator of time-translations could have either unbounded norm or

bounded norm. This does not appear to have been discussed before. The known

AdS black hole solutions are stationary in both senses because they admit Killing

fields that have the same asymptotic behaviour as ∂/∂t and ∂/∂φi above. However

there may well exist AdS black holes with less symmetry that are stationary only

with respect to a Killing field of bounded norm.
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We do not know whether the stationary nonaxisymmetric black holes discussed

above must be of this form. If they are, then, since the stationary Killing field must

be normal to the horizon, and since a Killing field of bounded norm is null on

the conformal boundary, such black holes must be rotating at the speed of light.i

Superficially, this makes sense because the superradiant instability ”switches off”

when the rotation of a black hole no longer exceeds the speed of light so one might

expect the black hole to evolve to a final state rotating precisely at the speed of

light. However, the evolution of the instability is a time-dependent process, during

which the notion of angular velocity is not even defined, so we see no reason why

the final time-independent state could not be rotating slower than light.

Finally, we note that supersymmetric black holes exist in AdS5.
38 Supersymme-

try guarantees the existence of a non-spacelike Killing vector field that is normal

to the event horizon36 and timelike with bounded norm at infinity,39 i.e., these so-

lutions have precisely the behaviour that we have just discussed and hence rotate

at the speed of light. However, these solutions admit extra Killing fields analagous

to ∂/∂φi (and hence also ∂/∂t) above so they are also stationary in the usual sense

(i.e. with respect to a Killing field of unbounded norm). The existence of these ex-

tra Killing fields appears unrelated to supersymmetry, which raises the question of

whether there exist more general supersymmetric black hole solutions without these

extra symmetries. Such black holes would be nonaxisymmetric, and stationary only

in the new sense that we have been discussing.

References

1. R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986).
2. R. Emparan and H. S. Reall, Phys. Rev. Lett. 88 (2002) 101101 [arXiv:hep-

th/0110260].
3. R. Emparan and R. C. Myers, JHEP 0309, 025 (2003) [arXiv:hep-th/0308056].
4. G. Gibbons and S. A. Hartnoll, Phys. Rev. D 66 (2002) 064024 [arXiv:hep-

th/0206202].
5. H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003) [arXiv:hep-

th/0305147].
6. A. Ishibashi and H. Kodama, Prog. Theor. Phys. 110, 901 (2003) [arXiv:hep-

th/0305185].
7. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38,

1113 (1999)] [arXiv:hep-th/9711200], S. S. Gubser, I. R. Klebanov and A. M. Polyakov,
Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109], E. Witten, Adv. Theor. Math.
Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

8. S. W. Hawking, C. J. Hunter and M. M. Taylor-Robinson, Phys. Rev. D 59 (1999)
064005 [arXiv:hep-th/9811056].

iThe terminology here may be a little confusing. If one defines angular velocity for such black
holes in the usual way then it will vanish because the stationary Killing field is normal to the

horizon. However, this is angular velocity defined with respect to a stationary bulk observer. Since
the stationary Killing field is null on the conformal boundary, such an observer actually rotates at
the speed of light with respect to the boundary and hence so does the black hole.



December 7, 2006 13:49 WSPC - Proceedings Trim Size: 9.75in x 6.5in main

20

9. G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, J. Geom. Phys. 53 (2005) 49
[arXiv:hep-th/0404008], Phys. Rev. Lett. 93, 171102 (2004) [arXiv:hep-th/0409155].

10. S. W. Hawking and H. S. Reall, Phys. Rev. D 61, 024014 (2000) [arXiv:hep-
th/9908109].

11. T. Damour, N. Deruelle and R. Ruffini, Lett. Nuovo Cim. 15 (1976) 257.
12. T. J. M. Zouros and D. M. Eardley, Annals Phys. 118 (1979) 139.
13. S. Detweiler, Phys. Rev. D 22, 2323 (1980).
14. V. Cardoso, O. J. C. Dias, J. P. S. Lemos and S. Yoshida, Phys. Rev. D 70, 044039

(2004) [Erratum-ibid. D 70, 049903 (2004)] [arXiv:hep-th/0404096].
15. V. Cardoso and O. J. C. Dias, Phys. Rev. D 70, 084011 (2004) [arXiv:hep-th/0405006].
16. S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972), Astrophys. J. 185, 635 (1973).
17. V. P. Frolov and D. Stojkovic, Phys. Rev. D 67, 084004 (2003) [arXiv:gr-qc/0211055].
18. D. Ida, Y. Uchida and Y. Morisawa, Phys. Rev. D 67, 084019 (2003) [arXiv:gr-

qc/0212035].
19. M. Vasudevan, K. A. Stevens and D. N. Page, Class. Quant. Grav. 22 (2005) 1469

[arXiv:gr-qc/0407030].
20. M. Vasudevan, K. A. Stevens and D. N. Page, Class. Quant. Grav. 22 (2005) 339

[arXiv:gr-qc/0405125], H. K. Kunduri and J. Lucietti, Phys. Rev. D 71 (2005) 104021
[arXiv:hep-th/0502124], M. Vasudevan and K. A. Stevens, Phys. Rev. D 72 (2005)
124008 [arXiv:gr-qc/0507096].

21. H. K. Kunduri, J. Lucietti and H. S. Reall, Phys. Rev. D 74, 084021 (2006) [arXiv:hep-
th/0606076].

22. H. K. Kunduri, J. Lucietti and H. S. Reall, in preparation.
23. G. W. Gibbons, M. J. Perry and C. N. Pope, Class. Quant. Grav. 22 (2005) 1503

[arXiv:hep-th/0408217].
24. N. P. Warner, Proc. Roy. Soc. Lond. A 383, 217 (1982).
25. C. N. Pope, J. Phys. A 15, 2455 (1982).
26. Y. Morisawa and D. Ida, Phys. Rev. D 71, 044022 (2005) [arXiv:gr-qc/0412070].
27. V. Cardoso, G. Siopsis and S. Yoshida, Phys. Rev. D 71, 024019 (2005) [arXiv:hep-

th/0412138].
28. W.H. Press and S.A. Teukolsky, Astrophys. J. 185, 649 (1973).
29. J.B. Hartle and D.C. Wilkins, Commun. Math. Phys. 38, 47 (1974).
30. S.A. Teukolsky and W.H. Press, Astrophys. J. 193, 443 (1974).
31. P. Breitenlohner and D. Z. Freedman, Annals Phys. 144, 249 (1982).
32. S. S. Gubser and I. Mitra, JHEP 0108, 018 (2001) [arXiv:hep-th/0011127].
33. R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993) [arXiv:hep-

th/9301052].
34. B.F. Schutz and C.M. Will, Astrophys. J. 291, L33 (1985).
35. V. Cardoso and S. Yoshida, JHEP 0507, 009 (2005) [arXiv:hep-th/0502206].
36. H. S. Reall, Phys. Rev. D 68, 024024 (2003) [Erratum-ibid. D 70, 089902 (2004)]

[arXiv:hep-th/0211290].
37. S. Hollands, A. Ishibashi and R. M. Wald, arXiv:gr-qc/0605106.
38. J. B. Gutowski and H. S. Reall, JHEP 0402, 006 (2004) [arXiv:hep-th/0401042],

JHEP 0404 (2004) 048 [arXiv:hep-th/0401129], Z. W. Chong, M. Cvetic, H. Lu and
C. N. Pope, Phys. Rev. D 72, 041901 (2005) [arXiv:hep-th/0505112], Phys. Rev. Lett.
95, 161301 (2005) [arXiv:hep-th/0506029], H. K. Kunduri, J. Lucietti and H. S. Reall,
JHEP 0604, 036 (2006) [arXiv:hep-th/0601156].

39. J. P. Gauntlett and J. B. Gutowski, Phys. Rev. D 68, 105009 (2003) [Erratum-ibid.
D 70, 089901 (2004)] [arXiv:hep-th/0304064].


