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Motivation
Black holes still remain to be one of the intriguing and
puzzling objects of study in both four and higher
dimensional spacetimes.

In four dimensions they were predicted in the framework of
ordinary General Relativity as the endpoint of gravitational
collapse of sufficiently massive stars.

Subsequently apart from their astrophysical implications,
they have also played a profound role in understanding the
nature of general relativity itself, resulting in the famous
Singularity Theorems.

Remarkable Features:
(i) Equilibrium and Uniqueness Properties,
(ii) Quantum Properties of Evaporation of Microscopic Black
Holes, etc.
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Motivation
One can expect that the properties of black holes might
also have played an important role in understanding the
nature of Gravity in Higher Dimensions. This has triggered
the study of black hole solutions in higher-dimensional
gravity theories as well as in string/M-theory.

Developments have revealed New Possibilities and New
Unexpected Features:

(i) For certain super-symmetric black holes in 5D it has
become possible to explain the Statistical Origin of the
Bekenstein-Hawking entropy,

(ii) Higher Dimensions allow Different Horizon Topologies
for Black Holes,

(iii) Some basic properties change, among them are
Stability and Uniqueness properties
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Instabilities and Non-uniqueness
The simplest class of extended Black Holes (Black Strings)
exhibits the linear perturbative instability below a certain
critical mass (Gregory-Laflamme instability), thereby providing
an example of non-uniqueness in the form of a Phase
Transition between black holes and black strings in higher
dimensions.

The first higher dimensional black hole solutions with the
Spherical Topology of the horizon: (Tangherlini, 1963 )

Rotating Black Hole solution: (Myers and Perry, 1986 ) This
solution is not unique, unlike its four dimensional
counterpart, the Kerr solution in 4D.

Rotating Black Ring solution in 5D with the horizon topology
of S2 × S1: (Emparan and Reall, 2002).
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Rotating Charged Black Holes
Though the exact non-rotating black hole solution to the
higher dimensional Einstein-Maxwell equations was found a
long time ago, rotating charged black holes have been
basically discussed in the framework of certain
Supergravity Theories and String Theory.

The rotating black hole solution in Higher Dimensional
Einstein-Maxwell Gravity, that is the counterpart of the
usual Kerr-Newman solution, still remains to be found
analytically !!!!

Numerical solution for some special cases: (Jutta Kunz et. al
2005).

I shall discuss the intermediate case of Slow Rotation,
namely a new analytical solution, which describe electrically
charged black holes with slow rotation in N + 1 Dimensions
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Weak electric charge
Let us assume that a rotating black hole in N + 1
dimensions possesses an electric charge, which is small
enough, i.e. Q � M .

In this case the space-time can still be well described by the
Myers-Perry metric:

ds2 = −
(

1 − m

rN−4 Σ

)

dt2 +
r N−2 Σ

∆
dr2 + Σ dθ2

+

(

r2 + a2 +
ma2 sin2 θ

rN−4 Σ

)

sin2 θ dφ2 (1)

−2ma sin2 θ

r N−4 Σ
dt dφ + r2 cos2 θ dΩ2

N−3 ,
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Weak electric charge
where the metric functions:

Σ = r2 + a2 cos2 θ , ∆ = rN−2(r2 + a2) − mr2 , (2)

the parameter m is related to the mass of the black hole,
while a is a parameter associated with its angular
momentum and

dΩ2
N−3 = dχ1

2 + sin2 χ1 ( dχ2
2 + sin2 χ2 (...dχN−3

2...) ) (3)

is the metric of a unit (N − 3)-sphere.

The MP metric admits the existence of the commuting
Killing vectors

ξ(0) = ξµ
(t)

∂

∂xµ
, ξ(3) = ξµ

(φ)

∂

∂xµ
, (4)
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Potential one-form
In order to construct the potential one-form we shall use the
well-known fact that for a Ricci-flat metric (as MP metric) a
Killing 1-form field is closed and co-closed, that is, it can
serve as a potential one-form for an associated test
Maxwell field.
We shall take the potential one-form field as

A = α ξ̂(t) , (5)

where the Killing one-form field: ξ̂(t) = ξ(t)µ dxµ and α is
an arbitrary constant parameter.
Using the integrals

Q =
1

AN−1

∮

?F , m = − 1

(N − 2)AN−1

∮

?dξ̂(t) (6)

Rotating Black Holes... – p. 6/11



Potential one-form
With this in mind we obtain the following expression for the
electromagnetic potential one-form

A = − Q

(N − 2) rN−4 Σ

(

dt − a sin2 θ dφ
)

. (7)

Accordingly, the electromagnetic two-form is given by

F = − Q

(N − 2) rN−3 Σ 2

{

H
(

dt − a sin2 θ dφ
)

∧ dr (8)

−ra sin 2θ
[

a dt −
(

r2 + a2
)

dφ
]

∧ dθ
}

,

where
H = (N − 2) Σ − 2 a2 cos2 θ . (9)
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Arbitrary Charge
For an arbitrary amount of the electric charge of the black
hole we must solve the simultaneous system of the
Einstein-Maxwell equations.

Strategies resulting in the familiar Kerr-Newman metric in
four dimensions

(i) The metric ansatz in the Kerr-Schild form

(ii) The complex coordinate transformation method (Newman
and Janis, 1965).

In both cases the potential one-form (7) remains
unchanged (!)
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The metric ansatz
Using the similar approach in N + 1 dimensions we arrive at
the metric ansatz:

ds2 = −
(

1 − m

rN−4 Σ
+

q2

r2(N−3) Σ

)

dt2 +
r N−2 Σ

∆
dr2 + Σ dθ2

+

(

r2 + a2 +
a2
(

mrN−2 − q2
)

sin2 θ

r2(N−3) Σ

)

sin2 θ dφ2

−
2a
(

mrN−2 − q2
)

sin2 θ

r2(N−3) Σ
dt dφ + r2 cos2 θ dΩ2

N−3 , (10)

where q is a charge parameter and

∆ = rN−2(r2 + a2) − mr2 + q2 r4−N . (11)
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The metric ansatz
This metric form is also obtained from the Myers-Perry
metric by a simple re-scaling of the mass parameter

m → m − q2/rN−2 . (12)

Straightforward calculations show that the source-free
Maxwell equations

∂ν(
√
−g Fµν) = 0 (13)

is satisfied with potential one-form (7).

Therefore, we use them to calculate the energy-momentum
source on the right-hand-side of the higher dimensional
Einstein equations.
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Einstein Equations

Rµ
ν = 8πGMµ

ν , (14)

where

Mµ
ν =

1

AN−1

(

FµαFνα − 1

2(N − 1)
δµ
ν FαβFαβ

)

. (15)

It is instructive to start with the case N = 3 . Then

M0
0 = −M3

3 = − Q2

8πΣ3

(

r2 + a2 + a2 sin2 θ
)

,

M1
1 = −M2

2 = − Q2

8πΣ2
,

M3
0 = − M0

3

(r2 + a2) sin2 θ
= − aQ2

4πΣ3
, (16)
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Einstein Equations
The components of the Ricci tensor are:

R0
0 = −R3

3 = − q2

Σ3

(

r2 + a2 + a2 sin2 θ
)

,

R1
1 = −R2

2 = − q2

Σ2
,

R3
0 = − R0

3

(r2 + a2) sin2 θ
= −2 aq2

Σ3
. (17)

Inspecting equations in (14) with these expressions we find
that q2 = GQ2 . This is the case of ordinary Kerr-Newman
black hole in 4 D.
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Einstein Equations
However, for the case N ≥ 4 equations in (14) are satisfied
only with slow rotation of the black hole. To first order in the
rotation parameter we obtain that

M0
0 = M1

1 = − N − 2

(N − 1)AN−1

Q2

r2(N−1)
,

M2
2 = M3

3 = M4
4 =

1

(N − 1)AN−1

Q2

r2(N−1)
, (18)

M0
3 = − r2 sin2 θ M3

0 =
a sin2 θ

AN−1

Q2

r2(N−1)
.

We note that all the components M i
i with i ≥ 4 are equal

to each other.
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Einstein Equations
We also have the Ricci components

R0
0 = R1

1 = − q2

r2(N−1)
(N − 2)2 ,

R2
2 = R3

3 = R4
4 =

q2

r2(N−1)
(N − 2) , (19)

R0
3 = −r2 sin2 θ R3

0 =
q2a sin2 θ

r2(N−1)
(N − 1)(N − 2)

along with the components Ri
i identical to each other for

all i ≥ 4 . Inspecting now equations in (14) we find that

q = ±Q

[

8πG

(N − 2) (N − 1)AN−1

]1/2

. (20)
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Solution
Finally, we have the solution:

ds2 = −
(

1 − m

rN−2
+

q2

r2(N−2)

)

dt2

+

(

1 − m

rN−2
+

q2

r2(N−2)

)

−1

dr2 (21)

−2 a sin2 θ

rN−2

(

m − q2

rN−2

)

dt dφ

+r2
(

dθ2 + sin2 θ dφ2 + cos2 θ dΩ2
N−3

)

.

while, the associated electromagnetic potential

A = − Q

(N − 2) rN−2

(

dt − a sin2 θ dφ
)

. (22)
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Gyromagnetic Ratio
The gyromagnetic ratio is the ratio of the magnetic dipole
moment of a rotating charged black hole to its angular
momentum.

For a black hole in four dimensions the gyromagnetic ratio
g = 2 , just like for the electron in Dirac theory, while for the
usual charged matter in classical electrodynamics g = 1 .

From the asymptotic behavior of the metric (21) we find that

g03 = − j sin2 θ

rN−2
+ O

(

1

r2(N−2)

)

, (23)

which gives the specific angular momentum j = am .
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Gyromagnetic Ratio
The magnetic dipole moment can also be determined from
the far distant behavior of the magnetic field

To describe the magnetic field it is useful to introduce the
magnetic (N − 2) -form

B̂N−2 = iξ̂(t)

?F =?
(

ξ̂(t) ∧ F
)

, (24)

which in the limit of slow rotation can be written as

B̂N−2 =
Qa

r2

√
γ cosN−3 θ

(

2 cos θ

N − 2

dr

r
+ sin θ dθ

)

∧

dχ1 ∧ dχ2 ∧ ... ∧ dχN−3 . (25)
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Gyromagnetic Ratio
In the asymptotic rest frame of the black hole the magnetic
(N − 2) -form has the following orthonormal components

Br̂ χ̂1χ̂2...χ̂N−3
=

2Qa

N − 2

cos θ

rN
,

B
θ̂ χ̂1χ̂2...χ̂N−3

=
Qa sin θ

rN
. (26)

These expressions show that the black hole can be
assigned a magnetic dipole moment given by

µ = Qa . (27)

j = ma . (28)
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Gyromagnetic Ratio
We can write

µ =
Qj

m
= (N − 1)

QJ

2M
, (29)

where we have used the relations

m =
16πG

N − 1

M

AN−1
, j =

8πGJ

AN−1
. (30)

Defining now the gyromagnetic parameter g in the usual
way

µ = g
QJ

2M
(31)
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Gyromagnetic Ratio
We find that a rotating charged black hole in N + 1
dimensions possesses the gyromagnetic ratio

g = N − 1 . (32)

We note that this value is valid:

(i) For Black Holes with small angular momentum ( a � M ),
but carrying an arbitrary amount of the electric charge
(ii) For Black Holes with small electric charge ( Q � M ), but
with arbitrary rotation.
For arbitrary angular momentum and arbitrary electric
charge we do not know the answer (!!!). Numerical results:
(Jutta Kunz et. al 2006)
Details in: A. N. Aliev, Mod. Phys. Lett. A 21, 751 (2006)
A. N. Aliev, Phys. Rev. D 74, 024011 (2006)
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