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Leading α′ corrections

Effective action in the Einstein frame

1

2κ2

∫ √
−g

[
R− 4

d − 2
(∂µφ) ∂µφ + e

4

2−d
φ λ

2
RµνρσRµνρσ

]
ddx,

λ =
α′

2
,
α′

4
(bosonic, heterotic).

Field equations

Rµν + λe
4

2−d
φ

(
RµρστR ρστ

ν − 1

2(d − 2)
gµνRρσλτRρσλτ

)
= 0;

∇2φ − λ

4
e

4

2−d
φ
(
RρσλτRρσλτ

)
= 0.
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General setup

Metric of the type

d s2 = −f(r) d t2 + f−1(r) d r2 + r2 dΩ2
d−2;

Variation of the metric

hµν = δgµν ;

Variation of the Riemann tensor:

δRρσµν =
1

2

(
R λ

µνρ hλσ −R λ
µνσ hλρ

− ∇µ∇ρhνσ + ∇µ∇σhνρ −∇ν∇σhµρ + ∇ν∇ρhµσ) .
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Perturbations on the (d − 2)-sphere

General tensors of rank at least 2 on the (d − 2)-sphere
can be uniquely decomposed in their tensorial, vectorial
and scalar components.

One can in general consider perturbations to the metric
and any other physical field of the system under
consideration.
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Tensorial perturbations of the metric

We consider only the tensorial part of hµν :

hij = 2r2HT (r, t)Tij

(
θi
)
, hia = 0, hab = 0

with
(
γklDkDl + kT

)
Tij = 0, DiTij = 0, gijTij = 0.

Di: (d − 2)-sphere covariant derivative, associated to
the metric γij .

Tij are the eigentensors of D2 on Sd−2

−kT = 2 − ℓ (ℓ + d − 3) are the eigenvalues of D2 on
Sd−2, where ℓ = 2, 3, 4, . . ..
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Tensorial perturbations of Rρσµν

δRijkl = [(2f − 1) HT + f∂rHT ]
(
gilTjk − gikTjl − gjlTik + gjkTil

)

+ r2HT

(
DiDlTjk − DiDkTjl − DjDlTik + DjDkTil

)
;

δRitjt =

[
−r2∂2

t HT +
1

2
ff ′r2∂rHT + ff ′rHT

]
Tij ;

δRirjr =

[
−r

f ′

f
HT −−1

2
r2f ′

f
∂rHT − 2r∂rHT − r2∂2

rHT

]
Tij ;

δRij =
r2

f

(
∂2

t HT

)
Tij − r2f

(
∂2

rHT

)
Tij − r2f ′ (∂rHT ) Tij

− 2rf ′HTTij + (2 − d) rf (∂rHT ) Tij

+ (2d − 6) (1 − f)HTTij + ℓ (ℓ + d − 3) HTTij;

δRrtrt = 0; δRrµ = δRtµ = 0; δR = 0.
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Perturbations of the field equations

δ∇2φ − λ

4
e

4

2−d
φδ
(
RρσλτRρσλτ

)
+

λ

d − 2
e

4

2−d
φRρσλτRρσλτδφ = 0,

δRij + λe
4

2−d
φ

[
δ
(
RiρστR ρστ

j

)
− 1

2(d − 2)
RρσλτRρσλτhij

− 1

2(d − 2)
gijδ

(
RρσλτRρσλτ

)]
+

4

d − 2
Rijδφ = 0.

Spherical symmetry, ∂kφ = 0, (a, b = r, t) :

δ∇2φ = gab∂a∂bδφ − gabΓ c
ab ∂cδφ + gij∂i∂jδφ − gijΓ k

ij ∂kδφ

− gijΓ a
ij ∂aδφ.

Using δ
(
RρσλτRρσλτ

)
= 0, we can set δφ = 0.
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Perturbed graviton field equation

»

1 − 2λ
f ′(r)

r

–

`

∂2
t HT − f2(r) ∂2

r HT

´

−f(r)

»

(d − 2)
f(r)

r
+ f ′(r) +

2λ

r

„

2(d − 4)
f(r) (1 − f(r))

r2

−2
f(r)f ′(r)

r
−
`

f ′(r)
´2

«–

∂rHT

+
f(r)

r

»

ℓ (ℓ + d − 3)

r
− 2f ′(r) + 2(d − 3)

1 − f(r)

r

+
λ

r

 

4ℓ (ℓ + d − 3)
1 − f(r)

r2
+ 2 (d − 3)

(1 − f(r))2

r2
− r2 (f ′′(r))2

d − 2

!#

HT = 0.
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The Master Equation

The perturbation equation can be written as a "master
equation"

∂2Φ

∂x2
− ∂2Φ

∂t2
=: VT Φ.

d x/d r = 1/f ("tortoise" coordinate);

Φ = k(r)HT ("master" variable);

VT : potential for tensor-type gravitational perturbations.
In classical EH gravity it is the same as the potential for
scalar fields (Ishibashi, Kodama);

k(r) = 1√
f

exp

(∫ f ′

f
+ d−2

r
+ 4

r3 (d−4)λ(1−f)− 4

r2 λf ′− 2

rf
λf ′2

2− 4

r
λf ′ dr

)
.
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The string-corrected tensor potential

VT[f(r)] = f(r)

„

ℓ (ℓ + d − 3)

r2
+

(d − 2) (d − 4) f(r)

4r2
+

2 (d − 3) (1 − f(r))

r2
+

(d − 6) f ′(r)

2r

«

+
λ

r2

»„

2ℓ (ℓ + d − 3)

r
+

(d − 4) (d − 5) f(r)

r
+

(d − 3) (1 − f(r))

r
+ (d − 4) f ′(r)

«

×

„

2
1 − f(r)

r
+ f ′(r)

«

+
“

3(d − 3) − (4d − 13)f(r)
” f ′(r)

r
−

− 4
`

f ′(r)
´2

+ (d − 4) f(r)f ′′(r) −
(rf ′′(r))2

d − 2

#

f(r).

This is the potential for tensor–type gravitational perturba-

tions of any kind of static, spherically symmetric R2 string–

corrected black hole in d–dimensions.
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Study of the stability

Solutions of the form Φ(x, t) = eiωtφ(x);

The master equation is then written in the Schrödinger
form, [

− d2

dx2
+ V

]
φ(x) =: Aφ(x) = ω2φ(x);

A solution to the field equation is then stable if the
operator A has no negative eigenvalues (Ishibashi,
Kodama; Dotti, Gleiser).
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"S-deformation" approach

Stability means positivity (for every possible φ) of the
following inner product:

〈φ,Aφ〉 =

∫ +∞

−∞
φ(x)

[
− d2

dx2
+ V

]
φ(x) dx

=

∫ +∞

−∞

[∣∣∣∣
dφ

dx

∣∣∣∣
2

+ V |φ|2
]

dx

=

∫ +∞

−∞

[
|Dφ|2 + Ṽ |φ|2

]
dx

with D = d
dx + S, Ṽ = V + f dS

dr − S2.
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"S-deformation" approach (cont.)

Taking S = −f
k

dk
dr we are left with

〈φ,Aφ〉 =

∫ +∞

−∞
|Dφ|2 dx +

∫ +∞

−∞

Q(r)

f
|φ|2 dx,

with

Q = f

»

ℓ (ℓ + d − 3)

r2
−

2f ′

r
+ 2(d − 3)

1 − f

r2

+
λ

r2

„

2ℓ (ℓ + d − 3)

r

„

2
1 − f

r
+ f ′

«

+
2(d − 3) (1 − f)

r

„

1 − f

r
+ 2f ′

«

− 4
`

f ′
´2

−
(rf ′′)2

d − 2

!#

.
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Stability condition

The second term of 〈φ,Aφ〉 can be written as

∫ +∞

RH

Q(r)
|φ|2
f(r)

dr.

For r > RH , f(r) > 0.

This condition keeps valid with α′ corrections as long as
the black hole in consideration is large, i.e. RH ≫

√
λ,

which is true in string perturbation theory.

This way the perturbative stability of a given black hole
solution, with respect to tensor–type gravitational
perturbations, follows if and only if one has Q(r) > 0 for
r ≥ RH .
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The Callan-Myers-Perry black hole

The only free parameter is µ (secondary hair);

Horizon RH := (2µ)
1

d−3 ;

f(r) =
(
1 −

(
RH

r

)d−3
) [

1 − λ (d−3)(d−4)
2

Rd−5

H

rd−1

rd−1−Rd−1

H

rd−3−Rd−3

H

]
;

α′-corrected ADM black hole mass:

m =

(
1 +

(d − 3)(d − 4)

2

λ

R2
H

)
(d − 2) Ad−2

κ2
µ

dilaton vanishes classically and only gets α′-corrections.
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Stability of solutions with secondary hair

For any string theory corrected, spherically symmetric,
static solution, which has no dilaton field at the classical
level (as is the case of the CMP solution), one has

Q(r) =
f(r)

1 − 2λf ′(r)
r

[
ℓ (ℓ + d − 3)

r2
+ 4λℓ (ℓ + d − 3)

1 − f(r)

r4

]

≃ f(r)
ℓ (ℓ + d − 3)

r2

[
1 +

2λ

r

(
2
1 − f(r)

r
+ f ′(r)

)]
.

One will have Q(r) ≥ 0 for r ≥ RH , in any spacetime
dimension, as long as

2
1 − f(r)

r
+ f ′(r)

∣∣∣∣
λ=0

> 0.
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Stability of solutions with secondary hair

At the classical level, the solution is unique (Myers,
Perry) and one has

2
1 − f(r)

r
+ f ′(r)

∣∣∣∣
λ=0

=
2µ(d − 1)

rd−2
,

which is positive for any r > RH .

This proves stability under tensor–type gravitational
perturbations of any spherically symmetric static
solution with no dilaton at λ = 0 for any d > 4.
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Scattering Theory

The equation describing gravitational perturbations to a
black hole solution allows for a study of scattering in this
spacetime geometry.

Classical result in EH gravity: for any spherically
symmetric black hole in arbitrary dimension, the
absorption cross–section of minimally–coupled
massless scalar fields equals the area of the black hole
horizon (Das, Gibbons, Mathur, 1997).

Universality of the low–frequency absorption
cross–sections of generic black holes in EH gravity?

Not much work has been done on trying to extend such
result with the inclusion of higher–derivative corrections.
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Scattering of tensor–type gravitational waves

We work in the low-frequency regime, RHω ≪ 1.

This allows us to use the technique of matching
solutions near the event horizon to solutions at
asymptotic infinity (Natário, Schiappa).

Leading contribution: s–wave, with ℓ = 0.
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Near-horizon solution (I)

The potential VT[f(r)] vanishes.

The master equation reduces to a simple free–field
equation (

d2

dx2
+ ω2

)(
k(r)HT (r)

)
= 0

whose solutions are incoming plane–waves in the
tortoise coordinate:

k(r) ≃ iR
d+1

2

H

(
1 +

(d + 1)(d − 4)

4

λ

R2
H

)
+ O (r − RH) ,

HT (x) = Aneare
iωx.
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Near-horizon solution (II)

Very close to the event horizon, r ≃ RH , one has

VT(r) ≃
(d − 2)(d − 3)2

2

 

1 −
(d − 1)(d − 4)2

d − 2

λ

R2
H

!

r − RH

R3
H

+ O
“

(r − RH)2
”

,

x(r) ≃
RH

d − 3

 

1 +
(d − 1)(d − 4)

2

λ

R2
H

!

log

„

r − RH

RH

«

+ O (r − RH)

and then

HT (r) ≃ Anear

(
1 + i

RHω

d − 3

(
1 +

(d − 1)(d − 4)

2

λ

R2
H

)
log

(
r − RH

RH

))
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Asymptotic infinity solution (I)

The asymptotic region of the CMP black hole is
basically flat Minkowski spacetime.

At asymptotic infinity, again VT[f(r)] vanishes.

The master equation reduces to a free–field equation
whose solutions are incoming or outgoing plane–waves
in the tortoise coordinate.

In the original radial coordinate,

HT (r) = (rω)(3−d)/2 [AJ(d−3)/2 (rω) + B N(d−3)/2 (rω)
]
.
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Asymptotic infinity solution (II)

At low–frequencies, with rω ≪ 1, such solution
becomes

HT (r) ≃ Aasymp
1

2
d−3

2 Γ
(

d−1
2

)+Basymp
2

d−3

2 Γ
(

d−3
2

)

π (rω)d−3
+O (rω) .

In order to compute the absorption cross–section, one
now needs to relate Anear, Aasymp and Basymp.
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Intermediate region solution (I)

VT(r) ≫ ω2, rω ≪ 1 (low–frequency constraint),
r−RH

RH
≫ (RHω)2.

Solution perturbative in λ : HT (r) = H0(r) + λH1(r).

H0(r) satisfies

»

−f(r)
d

dr

„

f(r)
d

dr

«

+ f(r)

„

(d − 2)(d − 4)f(r)

4r2
+

(d − 2)f ′(r)

2r

«–

(k0(r)H0(r)) = 0

with k0(r) = iR
3/2
H r

d−2

2 .

The most general solution is

H0(r) = A0
inter + B0

inter log

(
1 − Rd−3

H

rd−3

)
.
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Intermediate region solution (II)

Solving for H1(r) requires splitting into homogeneous
and non-homogeneous parts:

H1(r) = A1
inter + B1

inter log

(
1 − Rd−3

H

rd−3

)
+ HNH

1 (r).

After a very long analysis one concludes that

HT (r) = Ainter + Binter log

(
1 − Rd−3

H

rd−3

)
+ λHNH

1 (r).
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Intermediate region solution (III)

Although we do not know the exact expression for
HNH

1 (r), we know that it approximately behaves near the
black hole horizon as

HNH
1 (r) ≃

(d − 1)(d − 4)

2R2
H

»

−(d + 2)B0

inter + 4

„

A0

inter + B0

inter log

„

r − RH

RH

«

+ B0

inter log(d − 3)
”i r − RH

RH

+ O

 

„

r − RH

RH

«2

log

„

r − RH

RH

«

!

,

and that at asymptotic infinity this term can be
neglected.

It is this solution that allows us to interpolate between
the solutions near the event horizon and at asymptotic
infinity.
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Intermediate region solution (IV)

Near the horizon,

HT (r) ≃ Ainter +Binter log

(
r − RH

RH

)
+Binter log(d− 3)+ · · ·

At asymptotic infinity, one finds

HT (r) ≃ Ainter − Binter
Rd−3

H

rd−3
+ · · ·
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Calculation of the fluxes

Matching coefficients:

Aas = 2
d−3

2 Γ

„

d − 1

2

«

Aint = 2
d−3

2 Γ

„

d − 1

2

«

Anear,

Bas = −
π (RHω)d−3

2
d−3

2 Γ
“

d−3

2

”Bint = −
iπ (RHω)d−2

2
d−3

2 (d − 3)Γ
“

d−3

2

”

 

1 +
(d − 1)(d − 4)

2

λ

R2
H

!

Anear.

Near the black hole event horizon the flux per unit area
is

Jnear =
1

2i

 

H
†
T

(x)
dHT

dx
− HT (x)

dH
†
T

dx

!

= ω |Anear|
2 .

The flux per unit area at infinity is

Jas =
1

2i

 

H
†
T

(r)
dHT

dr
− HT (r)

dH
†
T

dr

!

=
2

π
r2−dω3−d |AasBas| .
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The absorption cross–section

General formula: σ =
R

rd−2JasympdΩd−2

Jnear
.

In our case,

σℓ=0
T = AH

(
1 +

(d − 1)(d − 4)

2

λ

R2
H

)
.

σ receives α′ corrections with respect to the EH result,
although it is still proportional to the area of the event
horizon;

σ is increased due to the string theoretic corrections.

Possible general formula:

σℓ=0
T =

d − 3

RHf ′(RH)
AH .
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Conclusions

We extended the perturbation theory to R2 stringy
gravity;

We studied the stability of black hole solutions under
tensor type gravitational perturbations, and proved the
perturbative stability of the CMP solution for any
space-time dimension;

We applied the master equation to compute the
absorption cross–section for low frequency gravitational
waves for the CMP black hole. We showed that this
cross–section is still proportional to the area of the
black hole horizon, in spite of receiving α′ corrections;

We proposed a generalization for the cross–section
which could be valid to all orders in α′.
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