Critical Collapse in higher dimensions

hep-th/0502034

Evgeny Sorkin \& Yonatan Oren

Racah Institute of Physics, Hebrew University, Jerusalem

Critical Collapse

 Choptuik 93- When increasing the initial amplitude p of a collapsing matter distribution, there will be a critical p_{*} where black holes begin to form.
- In a supercritical collapse ($\mathrm{p}>\mathrm{p}^{*}$)
- In a subcritical collapse ($\mathrm{p}<\mathrm{p}$ *) (Garfinkle \& Duncan 98)
- The critical solution is DSS

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{bh}} \sim\left(\mathrm{p}-\mathrm{p}^{*}\right)^{(\mathrm{D}-3) \gamma} \\
& \mathrm{R}_{\max } \sim\left(\mathrm{p}^{*}-\mathrm{p}\right)^{-2 \gamma} \\
& \mathrm{Z}^{*}(\mathrm{r}, \mathrm{t})=\mathrm{Z}^{*}\left(\mathrm{re}^{\Delta}, \mathrm{te}^{\Delta}\right)
\end{aligned}
$$

- γ, Δ, and the critical solution are universal in the initial configuration space, but depend on the dimension: D.
- In 4D SF collapse, $\gamma \approx 0.38, \Delta \approx 3.44$
-We analyzed critical collapse in $4 \leq \mathrm{D} \leq 11$ dimensions.
-The spacetime is asymptotically flat in (D-1)+1 dimensions.
-Matter content is a Spherically symmetric massless scalar field.
-The problem was formulated in double null coordinates, and solved using finite difference methods. The scaling exponent $\gamma(\mathrm{D})$ and the echoing period $\Delta(\mathrm{D})$ were extracted. Previous results for $D=4$ and $D=6$ were reproduced.
previous work: Garfinkle et al'99, 6D ; Birukou et al '02, 5-6D

The action: A minimally coupled massless scalar field

$$
I=\frac{1}{16 \pi G_{D}} \int R \sqrt{-g} d x^{D}-\frac{1}{2} \int g_{a b} \partial^{a} \phi \partial^{b} \phi \sqrt{-g} d x^{D}
$$

The metric: Spherically symmetric in double null coordinates

$$
d s^{2}=-\alpha(u, v)^{2} d u d v+r(u, v)^{2} d \Omega_{D-2}^{2}
$$

The numerical grid

1. Mesh refinement
2. Series expansion near the axis
3. Numerical dissipation

Results

Contours of φ in 6D

Results

$\underline{\text { Results }}$

Each point in this plot is a separate run with a different amplitude. The slope is -2γ

The "wiggles" about the linear fit have the period

$$
\Delta /(2 \gamma)
$$

[Gundlach 96; Hod \& Piran 96]

This gives an alternative and consistent method to derive either Δ or γ.

$$
R_{\max } \sim\left(p^{*}-p\right)^{-2 \gamma}
$$

Results: the echoing period \& scaling exp.

$$
\gamma_{m a s s}=(D-3) \gamma
$$

Concluding remarks

- We have obtained the mass scaling exponent and echoing period for $4 \leq D \leq 11$. The solution is DSS in all this range of dimensions, and shows no sign of changing this behavior.
- These results have since been confirmed and extended in an independent work by Bland et al., which go to $\mathrm{D}<14$. They suggest an asymptotically constant value of the critical exponents, but the issue is still not fully resolved. Finer numerics are required.

