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Motivation:

In 4D, only one available solution for a given set of asymptotic charges:

The Kerr black hole is the unique black hole solution of the vacuum Einstein 
equations for given mass M and angular momentum J (pure gravity).

In higher-dimensional General Relativity, the situation is very different:

• On Kaluza-Klein spaces MD-1 × S1 (pure gravity):
Phase structure very rich, there are interesting phase transitions between phases,
and in some cases there are an uncountable infinite number of available static 
solutions (for given mass and tension).

• In 5D flat space M5 (pure gravity):
Two different type of solutions: The Myers-Perry rotating black hole (topology S3) 
and the Emparan-Reall rotating black ring (topology S2 × S1). For given mass M 
and angular momenta J1, J2 = 0 there are up to 3 available solutions.  

For reviews: See Kol (2004) and TH & Obers (2005)



To understand the phase structure of higher-dimensional General Relativity, 
it is important to search for new black hole solutions

But it is very difficult to find exact solutions due to the non-linearity of GR

However, for stationary and axisymmetric metrics, which corresponds to
D-dimensional space-times with D-2 commuting Killing vector fields, the 
vacuum Einstein equations simplify significantly    

In this class of metrics: Kerr black hole (4D), Myers-Perry black hole (5D),
the black ring of Emparan & Reall (5D). 

Known results in 4D: 
• Weyl (1917) for static metrics (2 orthogonal commuting Killing vector fields).
• Papapetrou (1953, 1966) for stationary metrics (2 commuting Killing vector
fields).

Known results in D>4:
• Emparan & Reall (2001) for static metrics, i.e. for D-2 orthogonal commuting
Killing vector fields



Goal I: To find canonical form of metric and the vacuum Einstein equations
for D-dimensional stationary & axisymmetric metrics, i.e. metrics with D-2
commuting Killing vector fields.

Important to develop new method for finding exact solutions since we expect
more solutions to exist than the ones we know (e.g. 5D black ring with two 
angular momenta)

Important to get a handle on how many different solutions one can have: 
How unique/non-unique is a black hole solution.

Important since it can provide new insights into the solutions that we already 
know (e.g. rotating black holes and black rings in 5D).

Goal II: To understand the structure of stationary & axisymmetric metrics, 
i.e. their sources, and to find constructive approach to find solutions

Conjecture: A stationary & axisymmetric solution is unique, given its 
rod-structure



Recent work on stationary & axisymmetric black holes:

Hollands, Ishibashi & Wald (2006): 
A higher-dimensional stationary rotating black hole must be axisymmetric

Solitonic solutions, inverse scattering method, integrability: 

Koikawa (2005)
Pomeransky (2005)
Mishima & Igushi (2005)
Tomizawa, Morisawa & Yasui (2005)
Figueras (2005)
Azuma & Koikawa (2005)
Iguchi & Mishima (2006)
Tomizawa & Nozawa (2006)
Iguchi & Mishima (2006)

Generates S1 rotating black ring

Generates S2 rotating black ring

Generates Myers-Perry black hole

Yazadjiev (2006): Solution generation in 5D-Einstein-Maxwell-dilaton gravity

Jones & Wang (2004, 2005): S-branes, Weyl card diagrams



Important limitation:

Solutions which asymptotes to D-dimensional Minkowski-space MD

have at most 1 + [       ] Killing vector fields

For solutions which are asymptotically flat, we can therefore treat 
M4 and M5, i.e. asymptotically flat black hole solutions in 4D and 5D

We can furthermore consider solutions which
asymptote to M4 × Tn and M5 × Tn



Stationary & Axisymmetric Metrics

Consider a D-dim manifold (space-time)

Assume D-2 commuting Killing vector fields (linearly independent) V(i)
with i=1,2…,D-2 

We consider solutions to the vacuum Einstein equations

This defines our class of metrics

For this class of solutions we can write the metric in the canonical form:

(given a few extra technical assumptions…)



Canonical form of metric:

The two equations for ν(r,z) are integrable for a solution to Eq. (1). This means 
that we can find ν(r,z) for any given G(r,z) that solves Eq. (1).

Solving Einsteins equations reduces to the problem of 
finding a solution G(r,z) to Eq. (1). 

Canonical form for vacuum Einsteins equations:

The two equations for ν(r,z):  

Equation for Gij(r,z):



Compact form of equation for Gij(r,z):

Introduce the auxilirary angle γ so that we have the following metric for 
3D Euclidean space:

Then everything is axisymmetric wrt. the angle γ and we can write Eq. (1) as:

with



Reduction to previously known cases:
1) 4D, solutions of vacuum Einstein equations with two commuting Killing vector fields. 

Gives the Papapetrou form of stationary & axisymmetric metrics in 4D: 

Reduces to the Weyl form for A = 0.

2) D > 4, solutions of vacuum Einstein equations with D-2 orthogonal 
commuting Killing vector fields 
→ Generalized Weyl metrics (Emparan & Reall, 2001) 



Behavior of solutions for r → 0: 

Goal: To find regular solutions of Einstein equations

G(r,z) smooth for r > 0 ⇒ solution regular for r > 0

Regularity for r → 0:

For r > 0: 
Breaks down for r = 0 
since det(G(0,z)) = 0

Reason: We have sources at r=0.

Π (eigenvalues of G) = r2 → 0 for r → 0 Note: Eigenvalues 
real since GT=G

Suppose two eigenvalues → 0 for r → 0 

Solution singular at r=0

Therefore, we require dim(ker(G(0,z))) = 1
except at isolated values of z.



a1,a2,…,aN: The isolated values of z for which dim(ker(G(0,z))) > 1

Divide z-axis into N+1 intervals [ak-1,ak], k=1,…,N+1 (a0 = -∞, aN+1 = ∞)

.  .  .

We call an interval [ak-1,ak] a rod of the solution G(r,z)

dim(ker(G(0,z))) = 1 for ak-1 < z < ak

Consider z* with ak-1 < z* < ak

Exists orthogonal matrix Λ* such that

Define:  a solution



Careful analysis of for r → 0 

gives that

Therefore e = is an eigenvector for 

with eigenvalue 0 for z ∈ ]ak-1, ak[

v(k) = Λ* e is an eigenvector with eigenvalue 0 for G(0,z) for z ∈ ]ak-1, ak[ 

We call v(k) the direction of the rod [ak-1,ak].

Theorem:
For all N+1 rods [ak-1, ak] we can find a vector 

vector in the (D-2)-dimensional vector space
spanned by the Killing vector fields

such that
Note: v(k) unique in RPD-3

since dim(ker(G(0,z)))=1



The rod-structure of a solution:

The rods (intervals) [ak-1,ak] and their directions v(k), k=1,2,…,N+1.

Conjecture on uniqueness of solutions:

Given a rod-structure, at most one solution G(r,z) exists 
with that rod-structure

If true, this conjecture gives a complete classification of 
stationary & axisymmetric metrics (for pure gravity)



Consider G(r,z) diagonal ⇒ Emparans & Realls Generalized Weyl metrics:

.  .  .

v(k) = Directions of rods are all orthogonal (or tangent):
Rod-structure reduces to the rod-structure 
introduced by Emparan & Reall
Uniqueness-conjecture is proven true in this case

Note:

Rod [ak-1, ak] is a line source for the potential Ui

The reason for calling the intervals [ak-1, ak] rods



4D Kerr BH

-α zα

Ω1 , Ω2 : angular velocities

Non-static, non-diagonal cases

dir. of [-α,α] rod not orthogonal to directions of [-∞,-α] & 
[α,∞] 

Ω :angular velocity of Kerr BH

5D Myers-Perry BH

Explicit metric in (r,z) coordinates (canonical form of metric)

-α zα

S3 topology

Examples of solutions:



5D Black ring (Emparan & Reall)

Found explicit metric in (r,z) coordinates

z

Four rods

cκ2 κ2-cκ2

S2× S1 topologyhorizon



Further studies of the structure of Stationary & Axisymmetric solutions

Aim:

1. To prove that stationary & axisymmetric solutions are uniquely given by
their rod-structure

Would give a handle on how many black holes (and other solutions) we
have

2. Find constructive method to obtaining stationary & axisymmetric solutions

no general method exist

Problem not solved in 4D
Problem > 50 years

Even more interesting in D>4 since there are many more physically interesting
solutions



Sources for G(r,z):
(∗)Recall:

Reformulation:

Define               by

i.e.                               and 

Then (∗) ⇒ for r > 0
ρ(z): A source for G(r,z)

D-2 × D-2 matrixIncluding r = 0: 

Need also:                                                    ← from definition of 

i.e.

Natural to introduce potential:                  defined by 

Then

A(r,z) can be introduced always, and is a linear potential in diagonal case 
(Unlike G(r,z) which is like exp(linear) in diagonal case)



Introduce other source:

Claim : Given ρ(z) & Λ(z): A(r,z) and hence G(r,z) are uniquely determined

Equations for A(r,z):

→ Need to consider rod-structure to show this

Structure of sources ρ(z) , Λ(z) for rods:

interpretation : Total rod-density = const

Consider a rod [z1,z2] with direction v . Let z∈ ]z1,z2[ :

We can find a function λ(z) such that



Using all results on ρ(z) , Λ(z) for rods

One can prove that for a rod [z1,z2] with given ρ(z), Λ(z), 

Nontrivial, since there could be a free function coming in because of 
commutators in

A(r,z) is uniquely determined for z ∈ ]z1,z2[

Technique:

Trivial in diagonal case

From this + further analysis:

for z∈ ]z1,z2[



Philosophy:

Question of stationary & axisymmetric solutions reduced to a one dimensional 
problem of finding ρ(z) , Λ(z)

A(r,z) and hence G(r,z) is given uniquely from ρ(z) , Λ(z)

But is the rod-structure enough to determine ρ(z) , Λ(z) ?

No, not with the equations derived

need more constraints

Goal:

to be able to construct ρ(z), Λ(z) from knowledge of rod-structure

How can we find more constraints ?



Example: The Kerr black hole

For z ∈ [α,∞]: Put z → -z

For z ∈ [-∞,-α]:

For z ∈ [-α,α]:

-α zα



Smoothness conditions at rod end points:
Two rods [z1, z*] and [z*, z2] given

From knowing ρ(z) & Λ(z) for z ∈ ]z1, z*[ is it possible to get 
ρ(z) & Λ(z) for z ∈ ]z*, z2[? 
Yes: Follows from demanding smoothness (regularity) of solution at r=0 and z=z*

Define for given z* (not necessarily for rod end point):

We require that A(p,q) is smooth at (p,q)=(0,0)

etc…

Using these and more relations one can get ρ(z) & Λ(z) for z ∈ ]z*, z2[ 
from ρ(z) & Λ(z) for z ∈ ]z1, z*[

Conditions on ρ(z) and Λ(z):



Smoothness conditions at rod end points
→ ρ(z) and Λ(z) given from rod structure plus behavior at infinity

We need more constraints to fix ρ(z) and Λ(z)

How?  → Integrability

Equations for Sigma-model

We can generate an infinite set of currents from this:

This gives an infinite set of conserved quantities for the solution

→ Gives an infinite set of constraints on ρ(z) and Λ(z)

(see my next paper for details…)

Expectation: Only one solution to the constraints (at least locally)
→ Would give uniqueness of ρ(z) and Λ(z) for a given rod-structure

→ Important ingredient: Asymptotic flatness of solution



Conclusions:
• Found canonical form of metric for stationary & axisymmetric metrics:

• Einstein equations reduces to solving 

• Found metrics for the 5D Myers-Perry black hole and 
the 5D black ring of Emperan & Reall in canonical form

• We identified the rod-structure of a solution:  

.  .  .
Rods: The intervals [ak-1,ak]
v(k) the direction of rod [ak-1,ak]:  G(0,z) v(k) for z ∈ ] ak-1,ak [

Conjecture: A solution is unique given its rod-structure

If true, would provide classification of solutions



• We defined 
Sources for G(r,z): ρ(z) & Λ(z)

Given ρ(z) & Λ(z)              G(r,z) determined

ρ(z) & Λ(z) determined from rod-structure?

Future directions:
• Uniqueness theorem for rod-structure
(at least locally, i.e. uniqueness in a neighbourhood of the solution)

• Construction of new solutions
5D Black ring with two angular momenta
Solutions with KK-bubbles and black holes with rotation


