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Origin and Motivation

This method was introduced in Crisóstomo and Olea (2004).
For radial collapse in spherically symmetric spacetimes it is
much more convenient than Israel’s (1966).
It is also very convenient for theories with higher powers of the
curvature in the action (Crisóstomo, del Campo, Saavedra (2004)
and below).
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Figure: The schematic view of the hypersurfaces: spacelike hypersurface Σt ;
nλ timelike normal Σt ; uλ tangent vector to the shell submanifold Σξ, and ξλ

normal vector to Σξ. (From Crisóstomo and Olea (2004))
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Einstein-Hilbert Action
We introduce it using the Einstein-Hilbert action:

I = −κ

∫
ddx

√
−(d)g(R − 2Λ), (1)

κ =
1

2(d − 2)Ω(d−2)G
, Λ = − (d − 1)(d − 2)

2`2 .

Hamiltonian action with ADM foliation:

I =

∫
dtd (d−1)x(πij ġij − N⊥H⊥ − N iHi), (2)

H⊥ = − 1
κ
√

g

(
πijπ

ij − 1
(d − 2)

(πi
i )

2
)

+

+κ
√

g
(

(d−1)R(g)− 2Λ
)

+
√

gT⊥⊥, (3)

Hi = −2πj
i|j +

√
gT⊥i , (4)

The energy momentum tensor is the perfect fluid tensor:

Tµν = [σuµuν − τ̂(hµν + uµuν)]δ(X ) (5)
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Radial Collapse
Spherically symmetric and static interior and exterior spacetimes:

ds2
± = −N2

±(r)f 2
±(r)dt2

± + f−2
± (r)dr2 + r2dΩ2

(d−2), (6)
N± = 1, choice of time matching condition. (7)

This Ansatz is replaced in the constraint H⊥:

H⊥ = −
√

g
2Ω(d−2)G

[
(d − 3)

r2 (1− f 2)− (f 2)′

r
+

(d − 1)

`2

]
+

+
√

gT⊥⊥. (8)

After int., with T µνnµnν = T⊥⊥ = ασδ(r − R), σ > 0:

−∆f 2(r) = (Ω(d−2)Rσ)

(√
f 2
+ + Ṙ2 +

√
f 2
− + Ṙ2

)
G. (9)

We conclude that a collapse to a naked singularity is ruled out. E.g.
interior horizon and exterior naked solution, f 2

+ > 0 everywhere and
f 2
−(Rh) = 0 contradicts −∆f 2(r) > 0.
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Radial Collapse

For Schw-AdS, with m = Ω(d−2)R(d−2)σ, α± =
√

f 2
± + Ṙ2:

∆M = M+ −M− =
1
2

(α+ + α−)m. (10)

For Schwarzschild over empty spacetime (M− = 0), where a = M
m ,

f−(R) = 1, and f+(R) = 1− 2M/R:

(1 + Ṙ2)1/2 = a +
M

2 a R

This recovers the example in Israel (1966).
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Lovelock Action

(Lovelock (1970))

I = κ

∫
M

[d/2]∑
p = 0

αp εa1 ... ad Ra1 a2 ∧ · · · ∧ Ra2p−1 a2p ∧

∧ea2p+1 ∧ · · · ∧ ead + Sm . (11)

Rab = dωab + ωa
c ∧ ωcb, where the ωab is the spin connection, and

the ea is a local frame one-form.
Sm matter action, in this case

Sm = − 1
4εΩd−2

∫
M

√
−g FµνFµνdd x . (12)

The first three terms of the action are the cosmological constant,
the Einstein term, and the Gauss-Bonnet term.
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Coefficents and Constants

In order for there to be one cosmological constant, we have to
choose the αp. A possible choice is (Crisóstomo, Troncoso,
Zanelli (2000)):

αp =

 `2(p−k)

(d−2p)

(
k
p

)
, p ≤ k

0, p > k
. (13)

with 1 ≤ k ≤ [(d − 1)/2].
This set of theories possesses only two constants:

κ =
1

2(d − 2)!Ω(d−2)Gk
, Λ = − (d − 1)(d − 2)

2`2 .

Top k and odd d : Chern-Simons type (in 2+1: BTZ).
Top k and even d : Born-Infeld type (in 3+1: EH with Λ).
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Solutions: metric functions

The static and spherically symmetric solutions of these equations are
given, in the same Ansatz as before (Crisóstomo, Troncoso, Zanelli
(2000)):

f 2(r) = 1 +
r2

`2 − χ gk (r) , (14)

χ = (±1)k+1

gk (r) =

(
2Gk M + δd−2k,1

rd−2k−1 − ε Gk

(d − 3)

Q2

r2(d−k−2)

)1/k

. (15)

For odd k, black hole.
For even k, also naked singularity.
There are 2 singularities, r = 0 and r = re > 0: spacetime exists
eff. only for r > re (except for k = 1).
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Integration

For the same Ansatz, the total ⊥ constraint is, with
T⊥⊥ = σγδ(r − R(τ)):

H⊥ = −κ
(d − 2)!

rd−2

√
g

d
dr

{
rd−1

∑
p

(d − 2p) αp

(
1− f 2

r2

)p}
+

+
√

g T⊥⊥ +H(em)
⊥ . (16)

For Lovelock, after integration, where γ± =
√

f 2
± + Ṙ2 ,

m = Ω(d−2)R(d−2)σ:

(M+ −M−)−
ε(Q2

+ −Q2
−)

2(d − 3)

1
Rd−3 =

1
2

m(γ+ + γ−) . (17)

Let us denote the lhs as K (R).
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Shell equations

Squaring (17), with (σ > 0, K (R) > 0):

Ṙ2 =

(
K
m
± m

4 K
(
f 2
+ − f 2

−
))2

− f 2
± ≥ 0 (18)

From this one implicitly determines the bounce radius Rb.
Replacing Ṙ2 in the shell eq. we find a minimum radius of validity, Rc .
Deriving (18) w.r.t. the proper time of the shell τ , τ̂ surf. tension:

mR̈ =
(Q2

+ −Q2
−)γ+γ−m

2 K Rd−2 − (d − 2)Rd−3Ωd−2τ̂ γ+γ−

− m2

2 K
×

(
γ−

df 2
+

dR
+ γ+

df 2
−

dR

)
. (19)

The first term provides a way of avoiding collapse to naked
singularities in Chern-Simons (Crisóstomo, del Campo, Saavedra
(2000)).
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Properties

Shell restricted by Ṙ2 > 0, in which domain is governed by the
equation of motion.
There is a minimum radius Rc for the validity of the Ṙ2 equation.
It is the new term provided by the electric charge that is the
source of the dynamical barrier preventing collapse.
There is also a condition for collapse to a black hole, Rh being
the horizon radius:

4
m2

(
1 +

R2
h

`2

)2k−1(Rd−2k−1
h

2 Gk

)2

≥ 1 . (20)

The method does not apply when a shell crosses a horizon, we
must return to Israel (Gao and Lemos (2006)).
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Graphic Examples

Figure: d = 10, k = 4, ` = 1, χ = 1, M = 20, Q = 1.5, m = 15; G4 = 1 = ε
Collapses to black hole, acceleration negative up to horizon.
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Graphic Examples

Figure: d = 10, k = 4, ` = 1, χ = 1, M = 20, Q = 15, m = 15; G4 = 1 = ε
Overcharged black hole.
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Graphic Examples

Figure: d = 11, k = 5, ` = 1, χ = 1, M = 20, Q = 15, m = 15; G5 = 1 = ε
Overcharged black hole spacetime.
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Conclusions:
This method is more economic in radial spherical collapse than
Israel’s, specially for higher powers of the curvature. It just
requires the knowledge of the inside and outside metric
functions.
We were able to show through this method that the electric
charge provides a mechanism for cosmic censorship for
Chern-Simons type theories.
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